Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Cancer Chemother Pharmacol ; 69(3): 665-77, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21968950

ABSTRACT

PURPOSE: To characterize the cellular action mechanism of Debio 0507, we compared the major DNA adducts formed by Debio 0507- and oxaliplatin-treated HCT116 human colon carcinoma cells by a combination of inductively coupled plasma mass spectrometry (ICP-MS) and ultraperformance liquid chromatography mass spectrometry (UPLC-MS/MS). METHODS: HCT116 cells were treated with IC(50) doses of Debio 0507 or oxaliplatin for 3 days. Total cellular Pt-DNA adducts were determined by ICP-MS. The DNA was digested, and the major Pt-DNA adducts formed by both drugs were characterized by UPLC/MS/MS essentially as described previously for cisplatin (Baskerville-Abraham et al. in Chem Res Toxicol 22:905-912, 2009). RESULTS: The Pt level/deoxynucleotide was 7.4/10(4) for DNA from Debio 0507-treated cells and 5.5/10(4) for oxaliplatin-treated cells following a 3-day treatment at the IC(50) for each drug. UPLC-MS/MS in the positive ion mode confirmed the major Pt-DNA adducts formed by both drugs were dach-Pt-d(GpG) (904.2 m/z â†’ 610 m/z and 904.2 m/z â†’ 459 m/z) and dach-Pt-d(ApG) (888.2 m/z â†’ 594 m/z and 888.2 m/z â†’ 459 m/z). CONCLUSIONS: These data show that the major DNA adducts formed by Debio 0507 are the dach-Pt-d(GpG) and dach-Pt-d(ApG) adducts and at equitoxic doses Debio 0507 and oxaliplatin form similar levels of dach-Pt-d(GpG) and dach-Pt-d(ApG) adducts. This suggests that the action mechanisms of Debio 0507 and oxaliplatin are similar at a cellular level.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Adducts/metabolism , Deoxyadenine Nucleotides/metabolism , Deoxyguanosine/metabolism , Dinucleoside Phosphates/metabolism , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Culture Techniques , Chromatography, High Pressure Liquid , DNA Adducts/chemistry , Deoxyadenine Nucleotides/chemistry , Deoxyguanosine/chemistry , Dinucleoside Phosphates/chemistry , HCT116 Cells , Humans , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/metabolism , Oxaliplatin , Tandem Mass Spectrometry
2.
J Biol Chem ; 276(22): 18999-9005, 2001 Jun 01.
Article in English | MEDLINE | ID: mdl-11259423

ABSTRACT

DNA adducts formed by platinum-based anticancer drugs interfere with DNA replication. The carrier ligand of the platinum compound is likely to affect the conformation of the Pt-DNA adducts. In addition, the conformation of the adduct can also change upon binding of damaged DNA to the active site of DNA polymerase. From the crystal structures of pol beta ternary complexes it is evident that undamaged gapped and primed single-stranded (non-gapped) DNA templates exist in very different conformations when bound to pol beta. Therefore, one might expect that the constraints imposed on the damaged templates by binding to the polymerase active site should also affect the conformation of the Pt-DNA adducts and their ability to inhibit DNA replication. In support of this hypothesis we have found that the efficiency, carrier ligand specificity, site of discrimination (3'-G versus 5'-G of the Pt-GG adducts), and fidelity of translesion synthesis past Pt-DNA adducts by pol beta are strongly affected by the structure of the DNA template. Previous studies have suggested that the conformation of Pt-DNA adducts may be affected by the sequence context of the adduct. In support of this hypothesis, our data show that sequence context affects the efficiency, fidelity, and pattern of misincorporation by pol beta.


Subject(s)
DNA Adducts , DNA Polymerase beta/metabolism , DNA/chemistry , Nucleic Acid Conformation , Platinum/metabolism , Antineoplastic Agents/chemistry , Base Sequence , Binding Sites , Catalysis , DNA-Binding Proteins/metabolism , Deoxycytosine Nucleotides/metabolism , Humans , Kinetics , Ligands , Models, Chemical , Molecular Sequence Data , Organoplatinum Compounds/chemistry , Oxaliplatin , Protein Binding , Protein Conformation , Recombinant Proteins/metabolism
3.
Mol Pharmacol ; 58(5): 920-7, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11040038

ABSTRACT

Damage to cellular DNA is believed to determine the antiproliferative properties of platinum (Pt) drugs. This study characterized DNA damage by oxaliplatin, a diaminocyclohexane Pt drug with clinical antitumor activity. Compared with cisplatin, oxaliplatin formed significantly fewer Pt-DNA adducts (e.g., 0.86+/-0.04 versus 1.36+/- 0.01 adducts/10(6) base pairs/10 microM drug/1 h, respectively, in CEM cells, P<.01). Oxaliplatin was found to induce potentially lethal bifunctional lesions, such as interstrand DNA cross-links (ISC) and DNA-protein cross-links (DPC) in CEM cells. As with total adducts, however, oxaliplatin produced fewer (P<.05) bifunctional lesions than did cisplatin: 0.7+/-0.2 and 1.8+/-0.3 ISC and 0.8+/-0.1 and 1.5+/-0.3 DPC/10(6) base pairs/10 microM drug, respectively, after a 4-h treatment. Extended postincubation (up to 12 h) did not compensate the lower DPC and ISC levels by oxaliplatin. ISC and DPC determinations in isolated CEM nuclei unequivocally verified that oxaliplatin is inherently less able than cisplatin to form these lesions. Reactivation of drug-treated plasmids, observed in four cell lines, suggests that oxaliplatin adducts are repaired with similar kinetics as cisplatin adducts. Oxaliplatin, however, was more efficient than cisplatin per equal number of DNA adducts in inhibiting DNA chain elongation ( approximately 7-fold in CEM cells). Despite lower DNA reactivity, oxaliplatin exhibited similar or greater cytotoxicity in several other human tumor cell lines (50% growth inhibition in CEM cells at 1.1/1.2 microM, respectively). The results demonstrate that oxaliplatin-induced DNA lesions, including ISC and DPC, are likely to contribute to the drug's biological properties. However, oxaliplatin requires fewer DNA lesions than does cisplatin to achieve cell growth inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Nucleus/drug effects , DNA Damage , DNA/drug effects , Organoplatinum Compounds/pharmacology , Cell Nucleus/metabolism , Cisplatin/pharmacology , DNA/metabolism , DNA Adducts/metabolism , HT29 Cells , Humans , Oxaliplatin , Tumor Cells, Cultured
4.
J Biol Chem ; 275(17): 13017-25, 2000 Apr 28.
Article in English | MEDLINE | ID: mdl-10777605

ABSTRACT

DNA polymerase beta (pol beta) is the only mammalian DNA polymerase identified to date that can catalyze extensive bypass of platinum-DNA adducts in vitro. Previous studies suggest that DNA synthesis by pol beta is distributive on primed single-stranded DNA and processive on gapped DNA. The data presented in this paper provide an analysis of translesion synthesis past cisplatin- and oxaliplatin-DNA adducts by pol beta functioning in both distributive and processive modes using primer extension and steady-state kinetic experiments. Translesion synthesis past Pt-DNA adducts was greater with gapped DNA templates than with single-stranded DNA templates. In the processive mode pol beta did not discriminate between cisplatin and oxaliplatin adducts, while in the distributive mode it displayed about 2-fold increased ability for translesion synthesis past oxaliplatin compared with cisplatin adducts. The differentiation between cisplatin and oxaliplatin adducts resulted from a K(m)-mediated increase in the efficiency of dCTP incorporation across from the 3'-G of oxaliplatin-GG adducts. Rates of misincorporation across platinated guanines determined by the steady-state kinetic assay were higher in reactions with primed single-stranded templates than with gapped DNA and a slight increase in the misincorporation of dTTP across from the 3'-G was found for oxaliplatin compared with cisplatin adducts.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , DNA Adducts/metabolism , DNA Polymerase beta/metabolism , DNA Repair , DNA Replication , Organoplatinum Compounds/pharmacology , Base Sequence , DNA Primers/metabolism , Deoxycytosine Nucleotides/metabolism , Humans , Kinetics , Molecular Sequence Data , Oxaliplatin , Recombinant Proteins/metabolism , Thymine Nucleotides/metabolism , Time Factors
5.
Biochemistry ; 39(16): 4575-80, 2000 Apr 25.
Article in English | MEDLINE | ID: mdl-10769112

ABSTRACT

Platinum anticancer agents form bulky DNA adducts which are thought to exert their cytotoxic effect by blocking DNA replication. Translesion synthesis, one of the pathways of postreplication repair, is thought to account for some resistance to DNA damage and much of the mutagenicity of bulky DNA adducts in dividing cells. Oxaliplatin has been shown to be effective in cisplatin-resistant cell lines and less mutagenic than cisplatin in the Ames assay. We have shown that the eukaryotic DNA polymerases yeast pol zeta, human pol beta, and human pol gamma bypass oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. Human pol eta, a product of the XPV gene, has been shown to catalyze efficient translesion synthesis past cis, syn-cyclobutane pyrimidine dimers. In the present study we compared translesion synthesis past different Pt-GG adducts by human pol eta. Our data show that, similar to other eukaryotic DNA polymerases, pol eta bypasses oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. However, pol eta-catalyzed translesion replication past Pt-DNA adducts was more efficient and less accurate than that seen for previously tested polymerases. We show that the efficiency and fidelity of translesion replication past Pt-DNA adducts appear to be determined by both the structure of the adduct and the DNA polymerase active site.


Subject(s)
Cisplatin/metabolism , CpG Islands/genetics , DNA Adducts/metabolism , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Organoplatinum Compounds/metabolism , Base Sequence , DNA/biosynthesis , DNA/genetics , DNA/metabolism , DNA Adducts/genetics , DNA Primers/genetics , DNA Primers/metabolism , Humans , Kinetics , Ligands , Oxaliplatin , Pyrimidine Dimers/genetics , Pyrimidine Dimers/metabolism , Substrate Specificity , Templates, Genetic , Thermodynamics , DNA Polymerase iota
6.
Cancer Res ; 59(16): 3968-71, 1999 Aug 15.
Article in English | MEDLINE | ID: mdl-10463593

ABSTRACT

Tumors exhibit a spectrum of cellular responses to chemotherapy ranging from extreme sensitivity to resistance, either intrinsic or acquired. These variable responses are both patient and tumor specific. For platinum DNA-damaging agents, drug resistance depends on the carrier ligand of the platinum complex and is due to a combination of mechanisms including DNA repair. Nucleotide excision repair is the only known mechanism by which bulky adducts, including those generated by platinum chemotherapeutic agents, are removed from DNA in human cells. In this report, we show that the types of DNA lesions generated by three platinum drugs, cisplatin, oxaliplatin, and (Bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216), are repaired in vitro with similar kinetics by the mammalian nucleotide excision repair pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , DNA Damage/drug effects , DNA Repair/drug effects , Organoplatinum Compounds/pharmacology , Animals , CHO Cells , Cricetinae , DNA Adducts/drug effects , Drug Resistance, Neoplasm , HeLa Cells , Humans , Oxaliplatin
7.
Biochemistry ; 38(34): 11026-39, 1999 Aug 24.
Article in English | MEDLINE | ID: mdl-10460158

ABSTRACT

Translesion synthesis past Pt-DNA adducts can affect both the cytotoxicity and mutagenicity of the platinum adducts. We have shown previously that the extent of replicative bypass in vivo is influenced by the carrier ligand of platinum adducts. The specificity of replicative bypass may be determined by the DNA polymerase complexes that catalyze translesion synthesis past Pt-DNA adducts and/or by DNA damage-recognition proteins that bind to the Pt-DNA adducts and block translesion replication. In the present study, primer extension on DNA templates containing site-specifically placed cisplatin, oxaliplatin, JM216, or chlorodiethylenetriamine-Pt adducts revealed that the eukaryotic DNA polymerases beta, zeta, gamma, and human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) had a similar specificity for translesion synthesis past Pt-DNA adducts (dien >> oxaliplatin >/= cisplatin > JM216). Primer extension assays performed in the presence of high mobility group protein 1 (HMG1), which is known to recognize cisplatin-damaged DNA, revealed that inhibition of translesion synthesis by HMG1 also depended on the carrier ligand of the Pt-DNA adduct (cisplatin > oxaliplatin = JM216 >> dien). These data were consistent with the results of gel-shift experiments showing similar differences in the affinity of HMG1 for DNA modified with the different platinum adducts. Our studies show that both DNA polymerases and damage-recognition proteins can impart specificity to replicative bypass of Pt-DNA adducts. This information may serve as a model for further studies of translesion synthesis.


Subject(s)
Carrier Proteins/metabolism , Cisplatin/metabolism , DNA Adducts/metabolism , DNA Damage , DNA Replication , DNA-Directed DNA Polymerase/metabolism , High Mobility Group Proteins/metabolism , Saccharomyces cerevisiae Proteins , Base Sequence , Carrier Proteins/chemistry , Catalysis , Cisplatin/chemistry , DNA Adducts/chemistry , DNA Polymerase beta/metabolism , DNA Polymerase gamma , DNA Primers/metabolism , DNA-Directed DNA Polymerase/chemistry , HIV Reverse Transcriptase/metabolism , High Mobility Group Proteins/chemistry , Humans , Ligands , Molecular Sequence Data , Protein Binding , Saccharomyces cerevisiae/enzymology
8.
Cancer Chemother Pharmacol ; 44(1): 19-28, 1999.
Article in English | MEDLINE | ID: mdl-10367745

ABSTRACT

PURPOSE: Traditionally ultrafilterable Pt has been used to estimate the body exposure to platinum drugs. However, previous studies have shown that ultrafilterable Pt consists of both cytotoxic and inert biotransformation products of platinum drugs. Therefore, it has been proposed that pharmacokinetic parameters of the parent drug and its cytotoxic biotransformation products are more likely to be correlated with the drug toxicity and efficacy than those of ultrafilterable Pt. Oxaliplatin and ormaplatin are likely to form very similar biotransformation products in vivo based on previous studies. However, ormaplatin causes severe and irreversible neurotoxicity while oxaliplatin causes moderate and reversible neurotoxicity. To evaluate the hypothesis that the neurotoxicity is associated with the pharmacokinetics of active biotransformation products, we investigated the biotransformations and pharmacokinetics of oxaliplatin and ormaplatin in rats at equimolar doses. METHODS: 3H-oxaliplatin and 3H-ormaplatin were administered to Wistar male rats through single bolus i.v. injections (20 micromol/kg). Blood was sampled from 3.5 min to 360 min and centrifuged at 2000 g to separate the plasma from red blood cells (RBCs). The RBCs were sonicated and centrifuged at 13000 g to separate the cytosol from the membrane fraction. Both plasma and RBC cytosol were filtered through YMT30 membranes (Mr = 30000 kDa), and the ultrafiltrates were analyzed using a single column HPLC technique to identify and quantitate the biotransformation products. The pharmacokinetics of oxaliplatin, ormaplatin, and their biotransformation products were characterized utilizing the curve stripping and nonlinear least-squares fitting program RSTRIP. RESULTS: The decays of total, plasma, plasma ultrafilterable (PUF), RBC-bound, and plasma protein-bound Pt-dach (only Pt species with an intact dach carrier ligand were quantitated in this study) were described by biphasic curves. No significant kinetic differences between oxaliplatin and ormaplatin were observed for total, plasma, and PUF Pt-dach in the initial alpha decay phase. However, Pt-dach bound to plasma proteins fourfold more quickly for ormaplatin than for oxaliplatin, and the AUC for Pt-dach bound to plasma proteins was twofold higher for ormaplatin than for oxaliplatin. The concentration of RBC-bound Pt-dach was highest at the initial time-point of 3.5 min for both drugs, which suggested a very rapid RBC uptake. The binding of Pt-dach to RBCs was slightly greater initially for ormaplatin than for oxaliplatin. However, the RBC-bound Pt-dach decayed more rapidly for ormaplatin (t(1/2alphaRBC) = 5.1 min) than for oxaliplatin (t(1,2alphaRBC) = 15.3 min). Thus the AUC(RBC) was slightly greater for oxaliplatin than for ormaplatin. The AUC was also slightly greater for oxaliplatin than for ormaplatin for the Pt-dach associated with the RBC membrane and RBC cytosolic proteins. However, there was no significant difference between oxaliplatin and ormaplatin for Pt-dach in the RBC cytosolic ultrafiltrate. There was also no significant difference in the AUCpuf between oxaliplatin and ormaplatin. Both oxaliplatin and ormaplatin produced the same types of major plasma biotransformation products including Pt(dach)Cl2, Pt(dach)(Cys)2, Pt(dach)(GSH)2, Pt(dach)(GSH), Pt(dach)(Met), and free dach. The decays of oxaliplatin, ormaplatin, and their biotransformation products were described by biphasic curves. (ABSTRACT TRUNCATED)


Subject(s)
Antineoplastic Agents/pharmacokinetics , Organoplatinum Compounds/pharmacokinetics , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Biotransformation , Injections, Intravenous , Male , Nervous System/drug effects , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/adverse effects , Oxaliplatin , Rats , Rats, Wistar
9.
Cancer Chemother Pharmacol ; 44(1): 29-38, 1999.
Article in English | MEDLINE | ID: mdl-10367746

ABSTRACT

PURPOSE: Neurotoxicity is one of the major toxicities of platinum-based anticancer drugs, especially oxaliplatin and ormaplatin. It has been postulated that biotransformation products are likely to be responsible for the toxicity of platinum drugs. In our preceding pharmacokinetic study, both oxaliplatin and ormaplatin were observed to produce the same types of major plasma biotransformation products. However, while the plasma concentration of ormaplatin was much lower than that of oxaliplatin at an equimolar dose, one of their common biotransformation products, Pt(dach)Cl2, was present at 29-fold higher concentrations in the plasma following the i.v. injection of ormaplatin than of oxaliplatin. Because ormaplatin has severe neurotoxicity and Pt(dach)Cl2 is very cytotoxic, we have postulated that Pt(dach)Cl2 is likely to be responsible for the differences in neurotoxicity between ormaplatin and oxaliplatin. In order to test this hypothesis, we compared the neurotoxicity of oxaliplatin, ormaplatin, and their biotransformation products. Since the dorsal root ganglia (DRGs) have been suggested to be the likely targtet for platinum drugs and in vitro DRG explant cultures have been suggested to be a valid model for studying cisplatin-associated neurotoxicity, our comparative neurotoxicity study was conducted with DRG explant cultures in vitro. METHODS: Based on the previous studies of cisplatin neurotoxicity, we established our in vitro DRG explant culture utilizing DRGs dissected from E-19 embryonic rats. Rat DRGs were incubated for 30 min with different platinum compounds to mimic in vivo exposure conditions; this was by followed by a 48-h incubation in culture medium at 37 degrees C. At the end of the incubation, the neurites were fixed and stained with toluidine blue, and neurite outgrowth was quantitated by phase-contrast microscopy. The inhibition of neurite outgrowth by platinum compounds was used as an indicator of in vitro neurotoxicity. Since an in vivo study has indicated that the order of neurotoxicity is ormaplatin > cisplatin > oxaliplatin > carboplatin as measured by morphometric changes to rat DRGs, we initially validated our DRG explant culture model by comparing the in vitro neurotoxicity of ormaplatin, cisplatin, oxaliplatin, and carboplatin. After observing the same neurotoxicity rank between this study and a previous in vivo study, we further compared the neurotoxicity of oxaliplatin, ormaplatin, and their biotransformation products including Pt(dach)Cl2, Pt(dach)(H2O)Cl, Pt(dach)(H2O)2, Pt(dach)(Met), and Pt(dach)(GSH) utilizing the DRG explant culture model. RESULTS: Our study indicated that Pt(dach)Cl2 and its hydrolysis products were more potent at inhibiting neurite outgrowth than the parent drugs oxaliplatin and ormaplatin. In contrast, no detectable inhibition of neurite outgrowth was observed for DRGs dosed with Pt(dach)(Met) and Pt(dach)(GSH). CONCLUSION: This study suggests that biotransformation products such as Pt(dach)Cl2 and its hydrolysis products are more neurotoxic than the parent drugs oxaliplatin and ormaplatin. The different neurotoxicity profiles of oxaliplatin and ormaplatin are more likely due to the different plasma concentrations of their common biotransformation product Pt(dach)Cl2 than to differences in their intrinsic neurotoxicity.


Subject(s)
Ganglia, Spinal/drug effects , Organoplatinum Compounds/adverse effects , Animals , Biotransformation , Cells, Cultured/drug effects , Dose-Response Relationship, Drug , Hydrolysis , Nervous System/drug effects , Organoplatinum Compounds/metabolism , Organoplatinum Compounds/pharmacokinetics , Oxaliplatin , Rats , Rats, Wistar
10.
J Chromatogr B Biomed Sci Appl ; 724(2): 345-56, 1999 Mar 19.
Article in English | MEDLINE | ID: mdl-10219677

ABSTRACT

A novel single reversed-phase HPLC system was developed for separating oxaliplatin and its biotransformation products formed in rat plasma. The major stable biotransformation products of oxaliplatin formed in rat plasma were identified as Pt(dach)(Cys)2, Pt(dach)(Met) and free dach. The minor biotransformation products Pt(dach)Cl2, Pt(dach)(GSH) and Pt(dach)(GSH)2 could also be resolved from other Pt-dach complexes. Among these biotransformation products, the identification of Pt(dach)(Met) was further confirmed by LC-ESI-MS, and the identification of Pt(dach)(Cys)2, Pt(dach)(GSH), Pt(dach)(GSH)2 and free dach was confirmed by atomic absorption and double isotope labeling. This HPLC technique should prove useful for separating and identifying the biotransformation products of Pt-dach drugs such as oxaliplatin, ormaplatin and Pt(dach)(mal) in biological fluids. This will allow a more complete characterization of the pharmacokinetics and biotransformations of these Pt-dach drugs, which should in turn lead to a better understanding of the mechanisms leading to their toxicity and efficacy.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Organoplatinum Compounds/pharmacokinetics , Animals , Antineoplastic Agents/blood , Biotransformation , Male , Mass Spectrometry , Organoplatinum Compounds/blood , Oxaliplatin , Rats , Rats, Wistar
11.
Biol Trace Elem Res ; 67(1): 1-11, 1999 Jan.
Article in English | MEDLINE | ID: mdl-10065593

ABSTRACT

This study evaluated the performance of inductively coupled plasma mass spectrometry for the determination of platinum (Pt) in rat dorsal root ganglion. The method detection limit was found to be 0.008 ng/mL of Pt, which corresponds to 4 pg of Pt per milligram of ganglia. The standard deviations in the tissue matrix were 5.7% or better and minimum matrix effect was observed. Compared to indium, the use of iridium or a combination of iridium and bismuth as internal standard(s) provided more accurate measurement. The Pt in the tissue digestate was stable for a minimum of 46 d at levels above 0.05 ng/mL. Flow injection analysis using undiluted digestates resulted in approximately 20% signal enhancement. Internal standard correction was necessary to obtain accurate results. The method was used in initial studies in which rats were dosed with cisplatin and has shown that Pt accumulates and persists in dorsal rat ganglion following treatment.


Subject(s)
Ganglia, Spinal/chemistry , Platinum/analysis , Animals , Antineoplastic Agents/pharmacology , Cisplatin/pharmacokinetics , Flow Injection Analysis , Ganglia, Spinal/metabolism , Male , Mass Spectrometry/methods , Platinum/pharmacokinetics , Rats , Rats, Sprague-Dawley , Rats, Wistar , Reproducibility of Results , Sensitivity and Specificity
12.
J Biochem Mol Toxicol ; 13(3-4): 159-69, 1999.
Article in English | MEDLINE | ID: mdl-10098901

ABSTRACT

The partitioning and biotransformations of oxaliplatin [trans-l-1,2-diaminocyclohexaneoxalatoplatinum(II)] were investigated in the blood of Wistar male rats in vitro. [3-H]-Oxaliplatin was incubated with rat blood at 37 degrees C in 5% CO2 and the concentrations of all Pt complexes containing the [3-H]-dach carrier ligand were followed for up to 12 hours. Decay for both oxaliplatin and Pt-dach in the plasma ultrafiltrate (PUF) was rapid (t 1/2 oxaliplatin = 0.68 h and t 1/2 for Pt-dach in the PUF = 0.85 h). After 9 hours, the concentration of oxaliplatin fell below the detection limit. By 4 hours, the PUF-Pt-dach reached a plateau, which was 12% of total Pt-dach. The binding of Pt-dach to red blood cells (RBCs) and plasma proteins was also very rapid (t 1/2 RBCs = 0.58 h and t 1/2 plasma proteins = 0.78 h) and reached equilibrium by 4 hours. At equilibrium, 35% of total Pt-dach was bound to plasma proteins, 12% was in the plasma ultrafiltrate, and 53% was found associated with RBCs. Of the Pt-dach associated with RBCs, 23% was bound to the RBC membrane, 58% was bound to RBC cytosolic proteins, and 19% was in the RBC cytosol ultrafiltrate. Thus, these studies confirm previous observations of oxaliplatin accumulation by rat RBCs. To better characterize the determinants of this accumulation, oxaliplatin and other Pt-dach complexes were compared with respect to both their uptake by rat RBCs and their partition coefficients in octanol and water. The rank order for the rate of uptake was ormaplatin approximately Pt(dach)Cl2 > oxaliplatin > Pt(dach)(mal); while the rank order for hydrophobicity was ormaplatin > Pt(dach)Cl2 > Pt(dach)(mal) > oxaliplatin. Thus, in general, Pt-dach complexes appeared to be taken up better by RBCs than cisplatin or carboplatin, and the hydrophobicity of most of the Pt-dach complexes appeared to correlate with uptake. However, factors other than the dach carrier ligand and hydrophobicity clearly influence uptake. The biotransformations of oxaliplatin in rat blood were characterized utilizing reverse-phase high-pressure liquid chromatography (HPLC). In the RBC cytosol, both oxaliplatin and Pt(dach)Cl2 were observed at early times, while Pt(dach)(GSH)2, Pt(dach)(Cys)2, Pt(dach)(GSH), and free dach accumulated and reached steady-state levels by 4 hours. Thus, in the RBC cytosol, only chemically unreactive biotransformation products such as free dach and Pt-dach complexes with cysteine and glutathione accumulated in significant amounts. Furthermore, only Pt(dach)(Cys)2 and free dach appeared to efflux from RBCs. Thus, RBCs do not appear to serve as a reservoir for cytotoxic Pt-dach complexes. Finally, the biotransformation products of oxaliplatin in the plasma were identified as Pt(dach)Cl2, Pt(dach)(Cys)2, Pt(dach)(GSH), Pt(dach)(Met), Pt(dach)(GSH)2, and free dach. Among these compounds, Pt(dach)Cl2 formed transiently, while Pt(dach)(Cys)2, Pt(dach)(Met), and free dach accumulated and were the major biotransformation products by 4 hours. Thus, this study has identified the major inert and reactive biotransformation products of oxaliplatin in both plasma and RBCs and thus provides the information required for detailed pharmacokinetic and biotransformation studies of oxaliplatin. [figure in text]


Subject(s)
Antineoplastic Agents/blood , Organoplatinum Compounds/blood , Animals , Antineoplastic Agents/pharmacokinetics , Biotransformation , Chromatography, High Pressure Liquid , Half-Life , Male , Organoplatinum Compounds/pharmacokinetics , Oxaliplatin , Rats , Rats, Wistar
13.
J Inorg Biochem ; 77(1-2): 71-81, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10626357

ABSTRACT

Cell lines with resistance to cisplatin and carboplatin often retain sensitivity to platinum complexes with different carrier ligands (e.g., oxaliplatin and JM216). HeLa cell extracts were shown to excise cisplatin, oxaliplatin, and JM216 adducts with equal efficiency, suggesting that nucleotide excision repair does not contribute to the carrier-ligand specificity of platinum resistance. We have shown previously that the extent of replicative bypass in vivo is influenced by the carrier ligand of the platinum adducts. The specificity of replicative bypass may be determined by the DNA polymerase complexes that catalyze translesion synthesis past Pt-DNA adducts, by the mismatch-repair system that removes newly synthesized DNA opposite Pt-DNA adducts, and/or by DNA damage-recognition proteins that bind to the Pt-DNA adducts and block translesion synthesis. Primer extension on DNA templates containing site-specifically placed cisplatin, oxaliplatin, or JM216 Pt-GG adducts revealed that the eukaryotic DNA polymerases beta, zeta, gamma and HIV-1 RT had a similar specificity for translesion synthesis past Pt-DNA adducts (oxaliplatin > or = cisplatin > JM216). In addition, defects in the mismatch-repair proteins hMSH6 and hMLH1 led to increased replicative bypass of cisplatin adducts, but not of oxaliplatin adducts. Finally, primer extension assays performed in the presence of HMG1, which is known to recognize cisplatin-damaged DNA, revealed that inhibition of translesion synthesis by HMG1 also depended on the carrier ligand of the Pt-DNA adduct (cisplatin > oxaliplatin = JM216). These studies show that DNA polymerases, the mismatch-repair system and damage-recognition proteins can all impart specificity to replicative bypass of Pt-DNA adducts. Replicative bypass, in turn, may influence the carrier-ligand specificity of resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , DNA Adducts , DNA Repair/drug effects , DNA-Binding Proteins , Organoplatinum Compounds/pharmacology , Saccharomyces cerevisiae Proteins , Adaptor Proteins, Signal Transducing , Base Pair Mismatch/drug effects , Base Sequence , Carrier Proteins , DNA Replication/drug effects , DNA-Directed DNA Polymerase/drug effects , DNA-Directed DNA Polymerase/metabolism , Fungal Proteins/drug effects , Fungal Proteins/genetics , High Mobility Group Proteins/drug effects , High Mobility Group Proteins/metabolism , Humans , Molecular Sequence Data , MutL Protein Homolog 1 , Neoplasm Proteins/drug effects , Neoplasm Proteins/genetics , Nuclear Proteins , Oxaliplatin
14.
Ann Oncol ; 9(10): 1053-71, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9834817

ABSTRACT

Of the new generation platinum compounds that have been evaluated, those with the 1,2-diaminocyclohexane carrier ligand-including oxaliplatin--have been focused upon in recent years. Molecular biology studies and the National Cancer Institute in vitro cytotoxic screening showed that diaminocyclohexane platinums such as oxaliplatin belong to a distinct cytotoxic family, differing from cisplatin and carboplatin, with specific intracellular target(s), mechanism(s) of action and/or mechanism(s) of resistance. In phase I trials, the dose-limiting toxicity of oxaliplatin was characterized by transient acute dysesthesias and cumulative distal neurotoxicity, which was reversible within a few months after treatment discontinuation. Moreover, oxaliplatin did not display any, auditory, renal and hematologic dose-limiting toxicity at the recommended dose of 130 mg/m2 q three weeks or 85 mg/m2 q two weeks given as a two-hour i.v. infusion. Clinical phase II experiences on the antitumoral activity of oxaliplatin have been conducted in hundreds of patients with advanced colorectal cancers (ACRC). Single agent activity reported as objective response rate in ACRC patients is 10% and 20% overall in ACRC patients with 5-fluorouracil (5-FU) pretreated/refractory and previously untreated ACRC, respectively. Synergistic cytotoxic effects in preclinical studies with thymidylate synthase inhibitors, cisplatin/carboplatin and topoisomerase I inhibitors, and the absence of hematologic dose-limiting toxicity have made oxaliplatin an attractive compound for combinations. Phase II trials combining oxaliplatin with 5-FU and folinic acid ACRC patients previously treated/refractory to 5-FU showed overall response rates ranging from 21% to 58%, and survivals ranging from 12 to 17 months. In patients with previously untreated ACRC, combinations of oxaliplatin with 5-FU and folinic acid showed response rates ranging from 34% to 67% and median survivals ranging from 15 to 19 months. Two randomized trials totaling 620 previously untreated patients with ACRC, comparing 5-FU and folinic acid to the same regimen with oxaliplatin, have shown a 34% overall response rate in the oxaliplatin group versus 12% in the 5-FU/folinic acid group for the first trial; and 51.2% vs. 22.6% in the second one. These statistically significant differences were confirmed in time to progression advantage for the oxaliplatin arm (8.7 vs. 6.1 months, and 8.7 vs. 6.1 months, respectively). A small but consistent number of histological complete responses have been reported in patients with advanced colorectal cancer treated with the combination of oxaliplatin with 5-FU/folinic acid, and secondary metastasectomy is increasingly done by oncologists familiar with the combination. Based on preclinical and clinical reports showing additive or synergistic effects between oxaliplatin and several anticancer drugs including cisplatin, irinotecan, topotecan, and paclitaxel, clinical trials of combinations with other compounds have been performed or are still ongoing in tumor types in which oxaliplatin alone showed antitumoral activity such as ovarian, non-small-cell lung, breast cancer and non-Hodgkin lymphoma. Its single agent and combination therapy data in ovarian cancer confirm its non-cross resistance with cisplatin/carboplatin. While the role of oxaliplatin in medical oncology is yet to be fully defined, it appears to be an important new anticancer agent.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Animals , Antineoplastic Agents/chemistry , Clinical Trials as Topic , Colorectal Neoplasms/drug therapy , Evaluation Studies as Topic , Female , Humans , Male , Organoplatinum Compounds/chemistry , Ovarian Neoplasms/drug therapy , Oxaliplatin
15.
Cancer Res ; 58(16): 3579-85, 1998 Aug 15.
Article in English | MEDLINE | ID: mdl-9721864

ABSTRACT

Defects in mismatch repair are associated with cisplatin resistance, and several mechanisms have been proposed to explain this correlation. It is hypothesized that futile cycles of translesion synthesis past cisplatin-DNA adducts followed by removal of the newly synthesized DNA by an active mismatch repair system may lead to cell death. Thus, resistance to platinum-DNA adducts could arise through loss of the mismatch repair pathway. However, no direct link between mismatch repair status and replicative bypass ability has been reported. In this study, cytotoxicity and steady-state chain elongation assays indicate that hMLH1 or hMSH6 defects result in 1.5-4.8-fold increased cisplatin resistance and 2.5-6-fold increased replicative bypass of cisplatin adducts. Oxaliplatin adducts are not recognized by the mismatch repair complex, and no significant differences in bypass of oxaliplatin adducts in mismatch repair-proficient and -defective cells were found. Defects in hMSH3 did not alter sensitivity to, or replicative bypass of, either cisplatin or oxaliplatin adducts. These observations support the hypothesis that mismatch repair defects in hMutL alpha and hMutS alpha, but not in hMutS beta, contribute to increased net replicative bypass of cisplatin adducts and therefore to drug resistance by preventing futile cycles of translesion synthesis and mismatch correction.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/metabolism , Cisplatin/pharmacology , DNA Adducts/metabolism , DNA Repair , DNA, Neoplasm/drug effects , DNA-Binding Proteins/metabolism , Multidrug Resistance-Associated Proteins , Neoplasm Proteins/metabolism , Organoplatinum Compounds/pharmacology , Adaptor Proteins, Signal Transducing , Antineoplastic Agents/metabolism , Carrier Proteins , Chromosomes, Human, Pair 2/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , DNA Damage , DNA Repair/genetics , DNA Replication , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Drug Resistance, Neoplasm , Female , Genetic Complementation Test , Humans , MutL Protein Homolog 1 , MutS Homolog 3 Protein , Nuclear Proteins , Organoplatinum Compounds/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Oxaliplatin , Tumor Cells, Cultured/drug effects
16.
Semin Oncol ; 25(2 Suppl 5): 4-12, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9609103

ABSTRACT

Oxaliplatin, a platinum-based chemotherapeutic agent with a 1,2-diaminocyclohexane (DACH) carrier ligand, has shown in vitro and in vivo efficacy against many tumor cell lines, including some that are resistant to cisplatin and carboplatin. The retention of the bulky DACH ring by activated oxaliplatin is thought to result in the formation of platinum-DNA adducts, which appear to be more effective at blocking DNA replication and are more cytotoxic than adducts formed from cisplatin. Studies by the National Cancer Institute (NCI) have suggested that oxaliplatin has a spectrum of activity different from that of either cisplatin or carboplatin, suggesting that it has different molecular targets and/or mechanisms of resistance. Oxaliplatin has been demonstrated to differ in some mechanisms associated with the development of cisplatin resistance. Compared with cisplatin-conditioned cells, deficiencies in mismatch repair (MMR) and increases in replicative bypass, which appear to contribute to cisplatin resistance, have not been shown to induce a similar resistance to oxaliplatin. A decreased likelihood of resistance development makes oxaliplatin a good candidate for first-line therapy. Studies also demonstrate additive and/or synergistic activity with a number of other compounds, however, suggesting the possible use of oxaliplatin in combination therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Organoplatinum Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Biotransformation , DNA Adducts , DNA Repair , Drug Resistance, Neoplasm , Drug Synergism , Humans , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/therapeutic use , Oxaliplatin , Tumor Cells, Cultured
17.
Toxicol Sci ; 46(2): 342-51, 1998 Dec.
Article in English | MEDLINE | ID: mdl-10048138

ABSTRACT

Oxaliplatin (4 mg/kg), cisplatin (2 mg/kg with 20 mg/kg mannitol) and ormaplatin (2 mg/kg) were administered i.p. twice weekly for 4.5 weeks. Lactose injections (0.9%) were used as a control for oxaliplatin and 0.9% saline injections were used as a control for cisplatin and ormaplatin. Morphometric changes to dorsal root ganglia L4-L6 were quantitated as a measure of neurotoxicity. Drug treatment resulted in a decrease in cell and nuclear area and an increase in the percentage of cells with eccentric nucleoli for neuronal cell bodies in the DRG. Immediately following treatment the order of morphometric changes was ormaplatin > cisplatin > or = oxaliplatin. The accumulation of platinum in the DRG was measured by inductively coupled plasma mass spectrometry. The order of accumulation was cisplatin > oxaliplatin > ormaplatin. Following an 8-week recovery period the order of morphometric changes to the DRG was ormaplatin approximately equal to oxaliplatin > cisplatin. This correlated with a greater retention of platinum by the DRG for ormaplatin and oxaliplatin than for cisplatin. The results suggest that ormaplatin is uniquely neurotoxic immediately following treatment in the Wistar rat model. However, following an 8-week recovery period both ormaplatin and oxaliplatin are more neurotoxic than cisplatin and this neurotoxicity correlates with a greater retention of platinum by the DRG.


Subject(s)
Antineoplastic Agents/toxicity , Cisplatin/toxicity , Ganglia, Spinal/drug effects , Organoplatinum Compounds/toxicity , Animals , Antineoplastic Agents/metabolism , Body Weight/drug effects , Cisplatin/pharmacokinetics , Ganglia, Spinal/ultrastructure , Kidney/metabolism , Liver/metabolism , Male , Organoplatinum Compounds/pharmacokinetics , Oxaliplatin , Rats , Rats, Wistar
18.
Oncol Res ; 10(11-12): 595-603, 1998.
Article in English | MEDLINE | ID: mdl-10367941

ABSTRACT

Biotransformation products of platinum anticancer drugs have been suggested to be responsible for drug efficacy and toxicity. This study was designed to determine whether the efficacy of the closely related 1,2-diaminocyclohexane-Pt (dach-Pt) compounds oxaliplatin and ormaplatin were determined primarily by the parent drugs or by one of their biotransformation products. Based on consideration of both in vitro cytotoxicity in human colon carcinoma cells (HT-29) and concentrations following oxaliplatin administration in vivo, our data suggest that the efficacy of oxaliplatin is primarily determined by the plasma levels of the parent drug, with the biotransformation products Pt(dach)Cl2, Pt(dach)(H2O)Cl, and Pt(dach)(H2O)2 making only minor contributions. The stable biotransformation products containing amino acids did not have any significant cytotoxicity. In contrast, our data suggest that the efficacy of ormaplatin is primarily determined by plasma levels of Pt(dach)Cl2. The cytotoxicity of oxaliplatin, Pt(dach)Cl2, and Pt(dach)(H2O)Cl was approximately proportional to their cellular uptake, whereas the cytotoxicity of ormaplatin, Pt(dach)(H2O)2, and Pt(dach)(Met) was less than predicted from their uptake. Treatment of HT-29 cells with equimolar external concentrations of Pt(dach)Cl2 and oxaliplatin resulted in the formation of twofold more Pt-DNA adducts following Pt(dach)Cl2 treatment than following oxaliplatin treatment. However, intracellular Pt(dach)Cl2 levels were 30-fold higher for Pt(dach)Cl2-treated cells than for oxaliplatin-treated cells. These data suggest that intracellular conversion of oxaliplatin to Pt(dach)Cl2 makes only a minor contribution to Pt-DNA adduct formation and the resultant cytotoxicity of oxaliplatin.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma/drug therapy , Colonic Neoplasms/drug therapy , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/pharmacokinetics , Biotransformation , DNA Adducts/metabolism , Humans , Organoplatinum Compounds/pharmacokinetics , Oxaliplatin , Platinum/metabolism , Tumor Cells, Cultured/drug effects
19.
Cytometry ; 27(1): 54-64, 1997 Jan 01.
Article in English | MEDLINE | ID: mdl-9000585

ABSTRACT

The possible correlation between alterations in cytokinetic response to cisplatin (CP) treatment and drug resistance in human ovarian carcinoma cell lines was examined. Using dual parameter flow cytometry, we performed detailed time-course and dose-response analysis of cell cycle modifications in the parental A2780 and resistant A2780/CP cells exposed to CP. The data suggested that drug treatment resulted in similar types of cell cycle alterations in cells with different CP sensitivity. Rapid normalization of the cytokinetic pattern in both cell lines at low doses of CP was observed. At higher drug concentrations reversible S phase delay predominated, accompanied by blocks in both G1/S and G2/M and followed by complete normalization of cytokinetic patterns in the surviving cells. CP treatment by lethal doses resulted in almost complete S phase block. The surviving cells at 72 h accumulated in G2 phase. CP-induced cell cycle perturbations, among which the most pronounced were alterations in the S phase populations, correlated with the level of DNA damage, but not with cell survival in these cell lines. However, at identical levels of DNA damage, the resistant A2780/CP cell line demonstrated decreased p53 induction and decreased apoptosis compared to the parental cell line. Thus, at equivalent levels of DNA damage, resistance in this model system correlated with a diminished p53-dependent apoptotic pathway rather than with differences in cell cycle response.


Subject(s)
Carcinoma/pathology , Cell Cycle/drug effects , Cisplatin/pharmacology , DNA Adducts/pharmacology , Ovarian Neoplasms/pathology , Carcinoma/metabolism , Cisplatin/toxicity , DNA Adducts/toxicity , Drug Resistance, Neoplasm , Female , Flow Cytometry/methods , Humans , Ovarian Neoplasms/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/biosynthesis
20.
Cancer Chemother Pharmacol ; 39(3): 245-53, 1997.
Article in English | MEDLINE | ID: mdl-8996528

ABSTRACT

PURPOSE: DNA damage-inducible genes, such as gadd153, gadd45, p21 and c-jun, have previously been shown to be induced by the chemotherapeutic agent cisplatin. One of these genes, gadd153, has previously been reported to be differentially expressed in cisplatin-resistant cell lines and, therefore, to be a potential prognostic indicator for tumor response to cisplatin-based chemotherapy. It is not currently known whether such damage-inducible genes are turned on by the DNA damage itself (e.g. by the formation of Pt-DNA adducts) or by the downstream biological consequences of that damage. It is also not known whether the increased expression of these DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. These experiments were initiated to characterize more fully the nature of the DNA damage-inducible response to cisplatin treatment and to determine whether any of these genes might be useful prognostic indicators of tumor response to cisplatin chemotherapy. METHODS: The dose-response and time-course for the induction of the DNA damage-inducible genes gadd153, gadd45, p21 and c-jun were examined by Northern analysis in the human ovarian carcinoma cell line 2008 and its resistant subclone C13* following treatment with platinum anticancer agents. The extent of gene expression was correlated with cytotoxicity determined by growth inhibition assay, Pt-DNA adducts determined by atomic absorption spectrometry and inhibition of DNA synthesis determined by 3H-thymidine incorporation. RESULTS: All four genes were induced maximally in both sensitive and resistant cell lines at lethal cisplatin doses (> or = ID90). Induction was maximal between 24 and 48 h following exposure to the drug for all genes except c-jun which was induced by 6 h. At 24 h following cisplatin treatment the overall levels of gadd153 were less in the resistant C13* cell line than in the parental 2008 cell line, while those of gadd45 were greater in C13* than in 2008. Maximal expression of p21 and c-jun was not significantly different in the two cell lines. The dose-response of these genes correlated with the cytotoxicity of cisplatin and the inhibition of DNA synthesis by cisplatin, rather than to the actual levels of Pt-DNA adducts. The more cytotoxic platinum analog, ormaplatin, also induced gadd153 and its induction was also based on cytotoxicity. CONCLUSION: These results suggest that the regulation of gadd153 and gadd45 expression occurs thorough separate pathways in the 2008 and C13* cell lines. The DNA damage-inducible gene response for all four damage-inducible genes tested appeared to be more directly correlated with downstream biologic effects of cisplatin damage than with actual Pt-DNA adduct levels. The time-course and dose-response for induction of these genes was more consistent with delayed responses such as apoptosis rather than more immediate responses such as DNA repair. Finally, these results strengthen previous suggestions that the expression of gadd153, and possibly other DNA damage-inducible genes, may be useful indicators of tumor response to cisplatin-based chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , CCAAT-Enhancer-Binding Proteins , Cisplatin/pharmacology , DNA Damage/genetics , Gene Expression , Ovarian Neoplasms/genetics , Cisplatin/metabolism , Cyclin-Dependent Kinase Inhibitor p21 , Cyclins/genetics , Cyclins/metabolism , DNA Adducts/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Genes, jun , Half-Life , Humans , Intracellular Signaling Peptides and Proteins , Ovarian Neoplasms/metabolism , Proteins/genetics , Proteins/metabolism , RNA, Messenger/metabolism , Transcription Factor CHOP , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Cells, Cultured , GADD45 Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...