Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biochemistry ; 51(38): 7608-17, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22950413

ABSTRACT

Cisplatin (CP) and oxaliplatin (OX), platinum-based drugs used widely in chemotherapy, form adducts on intrastrand guanines (5'GG) in genomic DNA. DNA damage recognition proteins, transcription factors, mismatch repair proteins, and DNA polymerases discriminate between CP- and OX-GG DNA adducts, which could partly account for differences in the efficacy, toxicity, and mutagenicity of CP and OX. In addition, differential recognition of CP- and OX-GG adducts is highly dependent on the sequence context of the Pt-GG adduct. In particular, DNA binding protein domain HMGB1a binds to CP-GG DNA adducts with up to 53-fold greater affinity than to OX-GG adducts in the TGGA sequence context but shows much smaller differences in binding in the AGGC or TGGT sequence contexts. Here, simulations of the HMGB1a-Pt-DNA complex in the three sequence contexts revealed a higher number of interface contacts for the CP-DNA complex in the TGGA sequence context than in the OX-DNA complex. However, the number of interface contacts was similar in the TGGT and AGGC sequence contexts. The higher number of interface contacts in the CP-TGGA sequence context corresponded to a larger roll of the Pt-GG base pair step. Furthermore, geometric analysis of stacking of phenylalanine 37 in HMGB1a (Phe37) with the platinated guanines revealed more favorable stacking modes correlated with a larger roll of the Pt-GG base pair step in the TGGA sequence context. These data are consistent with our previous molecular dynamics simulations showing that the CP-TGGA complex was able to sample larger roll angles than the OX-TGGA complex or either CP- or OX-DNA complexes in the AGGC or TGGT sequences. We infer that the high binding affinity of HMGB1a for CP-TGGA is due to the greater flexibility of CP-TGGA compared to OX-TGGA and other Pt-DNA adducts. This increased flexibility is reflected in the ability of CP-TGGA to sample larger roll angles, which allows for a higher number of interface contacts between the Pt-DNA adduct and HMGB1a.


Subject(s)
Antineoplastic Agents/metabolism , Cisplatin/metabolism , DNA Adducts/metabolism , HMGB1 Protein/metabolism , Organoplatinum Compounds/metabolism , Animals , Hydrogen Bonding , Models, Molecular , Molecular Dynamics Simulation , Oxaliplatin , Rats
2.
PLoS One ; 6(8): e23582, 2011.
Article in English | MEDLINE | ID: mdl-21853154

ABSTRACT

The differences in efficacy and molecular mechanisms of platinum anti-cancer drugs cisplatin (CP) and oxaliplatin (OX) are thought to be partially due to the differences in the DNA conformations of the CP and OX adducts that form on adjacent guanines on DNA, which in turn influence the binding of damage-recognition proteins that control downstream effects of the adducts. Here we report a comprehensive comparison of the structural distortion of DNA caused by CP and OX adducts in the TGGT sequence context using nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. When compared to our previous studies in other sequence contexts, these structural studies help us understand the effect of the sequence context on the conformation of Pt-GG DNA adducts. We find that both the sequence context and the type of Pt-GG DNA adduct (CP vs. OX) play an important role in the conformation and the conformational dynamics of Pt-DNA adducts, possibly explaining their influence on the ability of many damage-recognition proteins to bind to Pt-DNA adducts.


Subject(s)
Base Pairing/drug effects , DNA Adducts/metabolism , Nucleic Acid Conformation/drug effects , Platinum/pharmacology , Amines/chemistry , Base Sequence , Hydrogen Bonding/drug effects , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Molecular Sequence Data , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Oxaliplatin , Platinum/chemistry , Protons , Solutions , Temperature
3.
Nucleic Acids Res ; 37(8): 2434-48, 2009 May.
Article in English | MEDLINE | ID: mdl-19255091

ABSTRACT

The differences in efficacy and molecular mechanisms of platinum based anti-cancer drugs cisplatin (CP) and oxaliplatin (OX) have been hypothesized to be in part due to the differential binding affinity of cellular and damage recognition proteins to CP and OX adducts formed on adjacent guanines in genomic DNA. HMGB1a in particular exhibits higher binding affinity to CP-GG adducts, and the extent of discrimination between CP- and OX-GG adducts is dependent on the bases flanking the adducts. However, the structural basis for this differential binding is not known. Here, we show that the conformational dynamics of CP- and OX-GG adducts are distinct and depend on the sequence context of the adduct. Molecular dynamics simulations of the Pt-GG adducts in the TGGA sequence context revealed that even though the major conformations of CP- and OX-GG adducts were similar, the minor conformations were distinct. Using the pattern of hydrogen bond formation between the Pt-ammines and the adjacent DNA bases, we identified the major and minor conformations sampled by Pt-DNA. We found that the minor conformations sampled exclusively by the CP-GG adduct exhibit structural properties that favor binding by HMGB1a, which may explain its higher binding affinity to CP-GG adducts, while these conformations are not sampled by OX-GG adducts because of the constraints imposed by its cyclohexane ring, which may explain the negligible binding affinity of HMGB1a for OX-GG adducts in the TGGA sequence context. Based on these results, we postulate that the constraints imposed by the cyclohexane ring of OX affect the DNA conformations explored by OX-GG adduct compared to those of CP-GG adduct, which may influence the binding affinities of HMG-domain proteins for Pt-GG adducts, and that these conformations are further influenced by the DNA sequence context of the Pt-GG adduct.


Subject(s)
Antineoplastic Agents/chemistry , Cisplatin/chemistry , DNA Adducts/chemistry , Organoplatinum Compounds/chemistry , Adenine/chemistry , Amines/chemistry , Base Sequence , Computer Simulation , Hydrogen Bonding , Ligands , Models, Molecular , Nucleic Acid Conformation , Oxaliplatin
4.
Chem Res Toxicol ; 22(5): 905-12, 2009 May.
Article in English | MEDLINE | ID: mdl-19323581

ABSTRACT

Platinum chemotherapeutic agents have been widely used in the treatment of cancer. Cisplatin was the first of the platinum-based chemotherapeutic agents and therefore has been extensively studied as an antitumor agent since the late 1960s. Because this agent forms several DNA adducts, a highly sensitive and specific quantitative assay is needed to correlate the molecular dose of individual adducts with the effects of treatment. An ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for quantification of 1,2 guanine-guanine intrastrand cisplatin adducts [CP-d(GpG)], using (15)N(10) CP-d(GpG) as an internal standard, was developed. The internal standard was characterized by MS/MS, and its concentration was validated by inductively coupled plasma mass spectrometry. Samples containing CP-d(GpG) in DNA were purified by enzyme hydrolysis, centrifugal filtration, and HPLC with fraction collection prior to quantification by UPLC-MS/MS in the selective reaction monitoring mode [m/z 412.5-->248.1 for CP-d(GpG); m/z 417.5-->253.1 for [(15)N(10)] CP-d(GpG)]. The recovery of standards was >90%, and quantification was unaffected by increasing concentrations of calf thymus DNA. This method utilizes 25 mug of DNA per injection. The limit of quantification was 3 fmol or 3.7 adducts per 10(8) nucleotides, which approaches the sensitivity of the (32)P postlabeling method for this adduct. These data suggested that this method is suitable for in vitro and in vivo assessment of CP-d(GpG) adducts formed by cisplatin and carboplatin. Subsequently, the method was applied to studies using ovarian carcinoma cell lines and C57/BL6 mice to illustrate that this method is capable of quantifying CP-d(GpG) adducts using biologically relevant systems and doses. The development of biomarkers to determine tissue-specific molecular dosimetry during treatment will lead to a more complete understanding of both therapeutic and adverse effects of cisplatin and carboplatin. This will support the refinement of therapeutic regimes and appropriate individualized treatment protocols.


Subject(s)
Chromatography, High Pressure Liquid/methods , Cisplatin/chemistry , Guanine/chemistry , Ribonucleosides/chemistry , Tandem Mass Spectrometry/methods , Animals , Carboplatin/chemistry , Cattle , Cell Line, Tumor , DNA/chemistry , Female , Mice , Mice, Inbred C57BL
5.
J Mol Biol ; 373(5): 1123-40, 2007 Nov 09.
Article in English | MEDLINE | ID: mdl-17900616

ABSTRACT

Mismatch repair proteins, DNA damage-recognition proteins and translesion DNA polymerases discriminate between Pt-GG adducts containing cis-diammine ligands (formed by cisplatin (CP) and carboplatin) and trans-RR-diaminocyclohexane ligands (formed by oxaliplatin (OX)) and this discrimination is thought to be important in determining differences in the efficacy, toxicity and mutagenicity of these platinum anticancer agents. We have postulated that these proteins recognize differences in conformation and/or conformational dynamics of the DNA containing the adducts. We have previously determined the NMR solution structure of OX-DNA, CP-DNA and undamaged duplex DNA in the 5'-d(CCTCAGGCCTCC)-3' sequence context and have shown the existence of several conformational differences in the vicinity of the Pt-GG adduct. Here we have used molecular dynamics simulations to explore differences in the conformational dynamics between OX-DNA, CP-DNA and undamaged DNA in the same sequence context. Twenty-five 10 ns unrestrained fully solvated molecular dynamics simulations were performed starting from two different DNA conformations using AMBER v8.0. All 25 simulations reached equilibrium within 4 ns, were independent of the starting structure and were in close agreement with previous crystal and NMR structures. Our data show that the cis-diammine (CP) ligand preferentially forms hydrogen bonds on the 5' side of the Pt-GG adduct, while the trans-RR-diaminocyclohexane (OX) ligand preferentially forms hydrogen bonds on the 3' side of the adduct. In addition, our data show that these differences in hydrogen bond formation are strongly correlated with differences in conformational dynamics, specifically the fraction of time spent in different DNA conformations in the vicinity of the adduct, for CP- and OX-DNA adducts. We postulate that differential recognition of CP- and OX-GG adducts by mismatch repair proteins, DNA damage-recognition proteins and DNA polymerases may be due, in part, to differences in the fraction of time that the adducts spend in a conformation favorable for protein binding.


Subject(s)
Cisplatin/chemistry , DNA/chemistry , Guanine/chemistry , Organoplatinum Compounds/chemistry , DNA Adducts , DNA Mismatch Repair , DNA Repair , Hydrogen Bonding , Nucleic Acid Conformation , Oxaliplatin , Protein Binding
6.
Biochemistry ; 46(22): 6477-87, 2007 Jun 05.
Article in English | MEDLINE | ID: mdl-17497831

ABSTRACT

Proteins that discriminate between cisplatin-DNA adducts and oxaliplatin-DNA adducts are thought to be responsible for the differences in tumor range, toxicity, and mutagenicity of these two important chemotherapeutic agents. However, the structural basis for differential protein recognition of these adducts has not been determined and could be important for the design of more effective platinum anticancer agents. We have determined high-resolution NMR structures for cisplatin-GG and undamaged DNA dodecamers in the AGGC sequence context and have compared these structures with the oxaliplatin-GG structure in the same sequence context determined previously in our laboratory. This structural study allows the first direct comparison of cisplatin-GG DNA and oxaliplatin-GG DNA solution structures referenced to undamaged DNA in the same sequence context. Non-hydrogen atom rmsds of 0.81 and 1.21 were determined for the 15 lowest-energy structures for cisplatin-GG DNA and undamaged DNA, respectively, indicating good structural convergence. The theoretical NOESY spectra obtained by back-calculation from the final average structures showed excellent agreement with the experimental data, indicating that the final structures are consistent with the NMR data. Several significant conformational differences were observed between the cisplatin-GG adduct and the oxaliplatin-GG adduct, including buckle at the 5' G6.C19 base pair, opening at the 3' G7.C18 base pair, twist at the A5G6.T20C19 base pair step, slide, twist, and roll at the G6G7.C19C18 base pair step, slide at the G7C8.C18G17 base pair step, G6G7 dihedral angle, and overall bend angle. We hypothesize that these conformational differences may be related to the ability of various DNA repair proteins, DNA binding proteins, and DNA polymerases to discriminate between cisplatin-GG and oxaliplatin-GG adducts.


Subject(s)
Antineoplastic Agents/chemistry , Cisplatin/chemistry , Cross-Linking Reagents/chemistry , DNA Adducts/chemistry , Guanine/chemistry , Models, Molecular , Organoplatinum Compounds/chemistry , Antineoplastic Agents/metabolism , Cross-Linking Reagents/metabolism , DNA Adducts/metabolism , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes , Oxaliplatin
7.
Mol Cell ; 22(3): 407-13, 2006 May 05.
Article in English | MEDLINE | ID: mdl-16678112

ABSTRACT

Regulation of mutation rates is critical for maintaining genome stability and controlling cancer risk. A special challenge to this regulation is the presence of multiple mutagenic DNA polymerases in mammals. These polymerases function in translesion DNA synthesis (TLS), an error-prone DNA repair process that involves DNA synthesis across DNA lesions. We found that in mammalian cells TLS is controlled by the tumor suppressor p53, and by the cell cycle inhibitor p21 via its PCNA-interacting domain, to maintain a low mutagenic load at the price of reduced repair efficiency. This regulation may be mediated by binding of p21 to PCNA and via DNA damage-induced ubiquitination of PCNA, which is stimulated by p53 and p21. Loss of this regulation by inactivation of p53 or p21 causes an out of control lesion-bypass activity, which increases the mutational load and might therefore play a role in pathogenic processes caused by genetic instability.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Repair/genetics , Mutagenesis/genetics , Mutation/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Cyclin-Dependent Kinase Inhibitor p21/deficiency , DNA/biosynthesis , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Knockout , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Protein Structure, Tertiary , Tumor Suppressor Protein p53/deficiency , Ubiquitin/metabolism , Ultraviolet Rays
8.
Crit Rev Oncol Hematol ; 53(1): 3-11, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15607931

ABSTRACT

The cytotoxicity of platinum compounds is thought to be determined primarily by their DNA adducts. Cisplatin and oxaliplatin are structurally distinct, but form the same types of adducts at the same sites on DNA. However, the DNA adducts are differentially recognized by a number of cellular proteins. For example, mismatch repair proteins and some damage-recognition proteins bind to cisplatin-GG adducts with higher affinity than to oxaliplatin-GG adducts, and this differential recognition of cisplatin- and oxaliplatin-GG adducts is thought to contribute to the differences in cytotoxicity and tumor range of cisplatin and oxaliplatin. A detailed kinetic analysis of the insertion and extension steps of dNTP incorporation in the vicinity of the adduct shows that both DNA polymerase beta (pol beta) and DNA polymerase eta (pol eta) catalyze translesion synthesis past oxaliplatin-GG adducts with greater efficiency than past cisplatin-GG adducts. In the case of pol eta, the efficiency and fidelity of translesion synthesis in vitro is very similar to that previously observed with cyclobutane TT dimers, suggesting that pol eta is likely to be involved in error-free bypass of Pt adducts in vivo. This has been confirmed for cisplatin by comparing the cisplatin-induced mutation frequency in human fibroblast cell lines with and without pol eta. Thus, the greater efficiency of bypass of oxaliplatin-GG adducts by pol eta may explain the lower mutagenicity of oxaliplatin compared to cisplatin. The ability of these cellular proteins to discriminate between cisplatin and oxaliplatin adducts suggest that there exist significant conformational differences between the adducts, yet the crystal structures of the cisplatin- and oxaliplatin-GG adducts were very similar. We have recently solved the solution structure of the oxaliplatin-GG adduct and have shown that it is significantly different from the previously published solution structures of the cisplatin-GG adducts. Furthermore, the observed differences in conformation provide a logical explanation for the differential recognition of cisplatin and oxaliplatin adducts by mismatch repair and damage-recognition proteins.


Subject(s)
Cisplatin/chemistry , DNA Adducts/chemistry , Organoplatinum Compounds/chemistry , Base Pair Mismatch , DNA Repair , DNA Replication , Humans , Oxaliplatin
9.
J Inorg Biochem ; 98(10): 1551-9, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15458816

ABSTRACT

Because of the efficacy of cisplatin and carboplatin in a wide variety of chemotherapeutic regimens, hundreds of platinum(II) and platinum(IV) complexes have been synthesized and evaluated as anticancer agents over the past 30 years. Of the many third generation platinum compounds evaluated to date, only oxaliplatin has been approved for clinical usage in the United States. Thus, it is important to understand the mechanistic basis for the differences in efficacy, mutagenicity and tumor range between cisplatin and oxaliplatin. Cisplatin and oxaliplain form the same types of adducts at the same sites on DNA. The most abundant adduct for both compounds is the Pt-GG intrastrand diadduct. Cisplatin-GG adducts are preferentially recognized by mismatch repair proteins and some damage-recognition proteins, and this differential recognition of cisplatin- and oxaliplatin-GG adducts is thought to contribute to the differences in cytotoxicity and tumor range of cisplatin and oxaliplatin. A detailed kinetic analysis of the insertion and extension steps of dNTP incorporation in the vicinity of the adduct shows that both pol beta and pol eta catalyze translesion synthesis past oxaliplatin-GG adducts with greater efficiency than past cisplatin-GG adducts. In the case of pol eta, the efficiency and fidelity of translesion synthesis in vitro is very similar to that previously observed with cyclobutane TT dimers, suggesting that pol eta is likely to be involved in error-free bypass of Pt adducts in vivo. This has been confirmed for cisplatin by comparing the cisplatin-induced mutation frequency in human fibroblast cell lines with and without pol eta. Thus, the greater efficiency of bypass of oxaliplatin-GG adducts by pol eta is likely to explain the lower mutagenicity of oxaliplatin compared to cisplatin. The ability of these cellular proteins to discriminate between cisplatin and oxaliplatin adducts suggest that there exist significant conformational differences between the adducts, yet the crystal structures of the cisplatin- and oxaliplatin-GG adducts were very similar. We have recently solved the solution structure of the oxaliplatin-GG adduct and have shown that it is significantly different from the previously published solution structures of the cisplatin-GG adducts. Furthermore, the observed differences in conformation provide a logical explanation for the differential recognition of cisplatin and oxaliplatin adducts by mismatch repair and damage-recognition proteins. Molecular modeling studies are currently underway to analyze the mechanistic basis for the differential bypass of cisplatin and oxaliplatin adducts by DNA polymerases.


Subject(s)
DNA Adducts/chemistry , DNA Adducts/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Platinum/chemistry , Base Sequence , Binding Sites , DNA Adducts/chemical synthesis , DNA Damage/drug effects , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Nucleic Acid Conformation/drug effects , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Oxaliplatin , Platinum/pharmacology
10.
Cancer Res ; 64(18): 6469-75, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15374956

ABSTRACT

Cisplatin, a widely used chemotherapeutic agent, has been implicated in the induction of secondary tumors in cancer patients. This drug is presumed to be mutagenic because of error-prone translesion synthesis of cisplatin adducts in DNA. Oxaliplatin is effective in cisplatin-resistant tumors, but its mutagenicity in humans has not been reported. The polymerases involved in bypass of cisplatin and oxaliplatin adducts in vivo are not known. DNA polymerase eta is the most efficient polymerase for bypassing platinum adducts in vitro. We evaluated the role of polymerase eta in translesion synthesis past platinum adducts by determining cytotoxicity and induced mutation frequencies at the hypoxanthine guanine phosphoribosyltransferase (HPRT) locus in diploid human fibroblasts. Normal human fibroblasts (NHF1) were compared with xeroderma pigmentosum variant (XPV) cells (polymerase eta-null) after treatment with cisplatin. In addition, XPV cells complemented for polymerase eta expression were compared with the isogenic cells carrying the empty expression vector. Cytotoxicity and induced mutagenicity experiments were measured in parallel in UVC-irradiated fibroblasts. We found that equitoxic doses of cisplatin induced mutations in fibroblasts lacking polymerase eta at frequencies 2- to 2.5-fold higher than in fibroblasts with either normal or high levels of polymerase eta. These results indicate that polymerase eta is involved in error-free translesion synthesis past some cisplatin adducts. We also found that per lethal event, cisplatin was less mutagenic than UVC. Treatment with a wide range of cytotoxic doses of oxaliplatin did not induce mutations above background levels in cells either expressing or lacking polymerase eta, suggesting that oxaliplatin is nonmutagenic in human fibroblasts.


Subject(s)
Cisplatin/pharmacology , DNA Adducts/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA/biosynthesis , Fibroblasts/enzymology , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cisplatin/metabolism , DNA/genetics , DNA-Directed DNA Polymerase/biosynthesis , Fibroblasts/drug effects , Fibroblasts/physiology , Frameshift Mutation , Gene Deletion , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Male , Organoplatinum Compounds/metabolism , Oxaliplatin , Ultraviolet Rays , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/pathology
11.
J Mol Biol ; 341(5): 1251-69, 2004 Aug 27.
Article in English | MEDLINE | ID: mdl-15321720

ABSTRACT

We have determined, at high resolution, the NMR solution structure of an oxaliplatin-GG DNA dodecamer in the AGGC sequence context by 2D NMR studies. Homonuclear assignment strategies resulted in unambiguous assignment of 203 out of 249 protons, which corresponds to assignment of approximately 81% of the protons. Assignments of H5' and H5" protons were tentative due to resonance overlap. The structure of the oxaliplatin duplex was calculated using the program CNS with a simulated annealing protocol. A total of 510 experimental restraints were employed in the structure calculation. Of 20 calculated structures, the 15 with the lowest energy were accepted as a family. The RMSD of the 15 lowest energy structures was 0.68 A, indicating good structural convergence. The theoretical NOESY spectrum obtained by back-calculation from the final average structure showed excellent agreement with the experimental data, indicating that the final structure was in good agreement with the experimental NMR data. Significant conformational differences were observed between the oxaliplatin-GG 12-mer DNA we studied and all previous solution structures of cisplatin-GG DNA duplexes. For example, the oxaliplatin-GG adduct shows much less distortion at the AG base-pair step than the cisplatin-GG adducts. In addition, the oxaliplatin-GG structure also has a narrow minor groove and an overall axis bend of about 31 degrees, both of which are very different from the recent NMR structures for the cisplatin-GG adducts. These structural differences may explain some of the biological differences between oxaliplatin- and cisplatin-GG adducts.


Subject(s)
Antineoplastic Agents/chemistry , Cross-Linking Reagents/chemistry , DNA Adducts/chemistry , DNA/chemistry , Nucleic Acid Conformation , Organoplatinum Compounds/chemistry , Antineoplastic Agents/metabolism , Cross-Linking Reagents/metabolism , DNA/metabolism , DNA Adducts/metabolism , Guanine/chemistry , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Organoplatinum Compounds/metabolism , Oxaliplatin , Protons , Temperature
12.
Biochemistry ; 42(48): 14197-206, 2003 Dec 09.
Article in English | MEDLINE | ID: mdl-14640687

ABSTRACT

DNA polymerases beta and eta are among the few eukaryotic polymerases known to efficiently bypass cisplatin and oxaliplatin adducts in vitro. Our laboratory has previously established that both polymerases misincorporated dTTP with high frequency across from cisplatin- and oxaliplatin-GG adducts. This decrease in polymerase fidelity on platinum-damaged DNA could lead to in vivo mutations, if this base substitution were efficiently elongated. In this study, we performed a steady-state kinetic analysis of the steps required for fixation of dTTP misinsertion during translesion synthesis past cisplatin- and oxaliplatin-GG adducts by pol beta and pol eta. The efficiency of translesion synthesis by pol eta past Pt-GG adducts was very similar to that observed for this polymerase when the template contains thymine-thymine dimers. This finding suggested that pol eta could play a role in translesion synthesis past platinum-GG adducts in vivo. On the other hand, translesion synthesis past platinum-GG adducts by pol beta was much less efficient. Translesion synthesis by pol eta is likely to be predominantly error-free, since the probability of correct insertion and extension by pol eta was 1000-2000-fold greater than the probability of incorrect insertion and extension. Our results also indicated that for pol eta the frequency of misincorporation is the same across from the 3'G and the 5'G of the platinum-GG adducts for both cisplatin and oxaliplatin adducts. On the other hand, pol beta is more likely to misinsert at the 3'G of the adducts and misinsertion occurs at higher frequency for oxaliplatin-GG than for cisplatin-GG adducts.


Subject(s)
Base Pair Mismatch , Cisplatin/chemistry , DNA Adducts/chemistry , DNA Polymerase beta/chemistry , DNA Primers/chemistry , DNA Repair , DNA-Directed DNA Polymerase/chemistry , Organoplatinum Compounds/chemistry , DNA Damage , Humans , Kinetics , Oxaliplatin , Recombinant Proteins/chemistry , Templates, Genetic , Thymine Nucleotides/chemistry
13.
Biochemistry ; 42(6): 1777-88, 2003 Feb 18.
Article in English | MEDLINE | ID: mdl-12578393

ABSTRACT

DNA polymerase mu (pol mu) is a member of the pol X family of DNA polymerases, and it shares a number of characteristics of both DNA polymerase beta (pol beta) and terminal deoxynucleotidyl transferase (TdT). Because pol beta has been shown to perform translesion DNA synthesis past cisplatin (CP)- and oxaliplatin (OX)-GG adducts, we determined the ability of pol mu to bypass these lesions. Pol mu bypassed CP and OX adducts with an efficiency of 14-35% compared to chain elongation on undamaged DNA, which is second only to pol eta in terms of bypass efficiency. The relative ability of pol mu to bypass CP and OX adducts was dependent on both template structure and sequence context. Since pol mu has been shown to be more efficient on gapped DNA templates than on primed single-stranded DNA templates, we determined the ability of pol mu to bypass Pt-DNA adducts on both primed single-stranded and gapped templates. The bypass of Pt-DNA adducts by pol mu was highly error-prone on all templates, resulting in 2, 3, and 4 nt deletions. We postulate that bypass of Pt-DNA adducts by pol mu may involve looping out the Pt-GG adduct to allow chain elongation downstream of the adduct. This reaction appears to be facilitated by the presence of a downstream "acceptor" and a gap large enough to provide undamaged template DNA for elongation past the adduct, although gapped DNA is clearly not required for bypass.


Subject(s)
Cisplatin/chemistry , DNA Adducts/chemistry , DNA Damage , DNA, Single-Stranded/biosynthesis , DNA-Directed DNA Polymerase/chemistry , Organoplatinum Compounds/chemistry , Catalysis , Cisplatin/toxicity , DNA Primers/chemistry , Deoxyadenine Nucleotides/chemistry , Deoxyguanine Nucleotides/chemistry , Guanine Nucleotides/chemistry , Humans , Oligonucleotides/chemistry , Organoplatinum Compounds/toxicity , Oxaliplatin , Templates, Genetic , Thymine Nucleotides/chemistry
14.
Anticancer Res ; 22(4): 2301-9, 2002.
Article in English | MEDLINE | ID: mdl-12174918

ABSTRACT

BACKGROUND: Both oxaliplatin and ormaplatin undergo biotransformation to Pt(dach)Cl2 with studies suggesting a predictive relationship between systemic exposure to Pt(dach)Cl2 and the severity of the delayed sensory neuropathy associated with ormaplatin. Studies characterizing the pharmacokinetic parameters of oxaliplatin and Pt(dach)Cl2 in humans have not been reported. This study was conducted to characterize the pharmacokinetic parameters of oxaliplatin and Pt(dach)Cl2 and to determine the extent to which oxaliplatin undergoes biotransformation to Pt(dach)Cl2 in humans. MATERIALS AND METHODS: Ten adult patients with metastatic colon cancer received oxaliplatin with or without fluorouracil-based chemotherapy. Blood samples were obtained during cycles 1 and 2. Total platinum, oxaliplatin and Pt(dach)Cl2 in the plasma ultrafiltrate were measured using high performance liquid chromatography and atomic absorption spectrometry. All patients underwent a thorough neurological evaluation after each cycle. RESULTS: The median steady-state concentration (C(SS)) (interquartile range, 25% to 75%) for oxaliplatin 85 mg/m2 was 0.33 microg Pt/ml (0.28 to 0.38 microg Pt/ml). The area under the curve (AUC) was 0.79 microg Pt/ml/h (0.62 to 0.88 microg Pt/ml/h) and the elimination half-life was 0.32 h (0.27 to 0.46 h). The median C(SS) for Pt(dach)Cl2 was 0.008 microg Pt/ml (0.004 to 0.014 microg Pt/ml). The C(SS) ratio of oxaliplatin to Pt(dach)Cl2 was 31 (24 to 51). All patients reported acute cold-induced neuropathy following cycles 1 and 2. Only two patients reported delayed sensory neuropathy (grade 1). CONCLUSION: The parent drug oxaliplatin is the major active platinum complex detected in plasma ultrafiltrate for at least the first few hours following oxaliplatin infusion in humans. Therefore, the plasma biotransformation products of oxaliplatin are unlikely to contribute to its efficacy or toxicity. In particular, plasma Pt(dach)Cl2 is unlikely to significantly contribute to the delayed sensory neuropathy associated with oxaliplatin, since only a limited amount (<3%) of oxaliplatin undergoes biotransformation to Pt(dach)Cl2.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacokinetics , Colonic Neoplasms/drug therapy , Nervous System/pathology , Organoplatinum Compounds/pharmacokinetics , Organoplatinum Compounds/toxicity , Adenocarcinoma/pathology , Adult , Aged , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/toxicity , Biotransformation , Cisplatin/pharmacokinetics , Cisplatin/therapeutic use , Colonic Neoplasms/pathology , Colonic Neoplasms/secondary , Female , Humans , Kinetics , Male , Middle Aged , Neoplasm Metastasis , Nervous System/drug effects , Organoplatinum Compounds/therapeutic use , Oxaliplatin , Pilot Projects
16.
DNA Repair (Amst) ; 1(12): 1003-16, 2002 Dec 05.
Article in English | MEDLINE | ID: mdl-12531010

ABSTRACT

DNA polymerases beta (pol beta ) and eta (pol eta ) are the only two eukaryotic polymerases known to efficiently bypass cisplatin and oxaliplatin adducts in vitro. Frameshift errors are an important aspect of mutagenesis. We have compared the types of frameshifts that occur during translesion synthesis past cisplatin and oxaliplatin adducts in vitro by pol beta and pol eta on a template containing multiple runs of nucleotides flanking a single platinum-GG adduct. Translesion synthesis past platinum adducts by pol beta resulted in approximately 50% replication products containing single-base deletions. For both adducts the majority of -1 frameshifts occurred in a TTT sequence 3-5 bp upstream of the DNA lesion. For pol eta, all of the bypass products for both cisplatin and oxaliplatin adducts contained -1 frameshifts in the upstream TTT sequence and most of the products of replication on oxaliplatin-damaged templates had multiple replication errors, both frameshifts and misinsertions. In addition, on platinated templates both polymerases generated replication products 4-8 bp shorter than the full-length products. The majority of short cisplatin-induced products contained an internal deletion which included the adduct. In contrast, the majority of oxaliplatin-induced short products contained a 3' terminal deletion. The implications of these in vitro results for in vivo mutagenesis are discussed.


Subject(s)
Cisplatin/metabolism , DNA Adducts/genetics , DNA Adducts/metabolism , DNA Repair , Base Sequence , Cisplatin/pharmacology , DNA Damage , DNA Polymerase beta/metabolism , DNA-Directed DNA Polymerase/metabolism , Frameshift Mutation , Humans , In Vitro Techniques , Models, Biological , Molecular Sequence Data , Mutagens/pharmacology , Organoplatinum Compounds/pharmacology , Oxaliplatin , Recombinant Proteins/metabolism , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...