Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 84(2): 275-280, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32977331

ABSTRACT

ABSTRACT: Salmonella Enteritidis is responsible for a significant proportion of foodborne salmonellosis in the United States and continues to be attributable to table eggs despite increased federal oversight. Technologies, including feed additives, continue to be evaluated for preharvest application and their potential food safety benefits. Diamond V Original XPC, a Saccharomyces cerevisiae fermentation-based postbiotic (SCFP), was evaluated for its effectiveness in reducing Salmonella Enteritidis (SE) colonization in young layer pullets. A total of 40 day-old Hy-Line W-36 layer pullets were equally divided and randomly assigned to one of two dietary treatments, with SCFP or without SCFP (PCON), and orally gavaged on day 28 with SE at 106 CFU/mL. Another 20 day-old pullets were fed the same control feed without SCFP and blank inoculated on day 28 with 1 mL of sterile phosphate-buffered saline to serve as a negative control. Qualitative and quantitative analyses of cecal contents for Salmonella were performed for all birds on day 32. The prevalence of SE in the ceca of all directly challenged birds was 100%; however, the SE concentration in birds fed SCFP diet (3.35 log CFU/g) was significantly lower (P < 0.0001) than that of the PCON birds not fed SCFP (4.49 log CFU/g). The proportion of birds with enumerable SE concentrations was lower in SCFP-fed pullets (57.9%) than in the PCON pullets (95.0%). These data suggest that inclusion of SCFP in the diet may aid in the reduction of SE within the ceca of commercial laying hens and could serve as an additional preharvest food safety hurdle.


Subject(s)
Poultry Diseases , Salmonella Infections, Animal , Animals , Female , Animal Feed/analysis , Chickens , Diet , Fermentation , Food Safety , Poultry Diseases/prevention & control , Saccharomyces cerevisiae , Salmonella enteritidis
2.
J Food Prot ; 70(5): 1072-5, 2007 May.
Article in English | MEDLINE | ID: mdl-17536662

ABSTRACT

A method to validate enumeration of Escherichia coli O157 in fecal samples from feedlot cattle was developed in these studies. Due to background flora, bovine fecal sample enumeration cannot be performed by simple direct plating techniques. Known quantities of E. coli O157:H7 were inoculated into feces, and populations were determined by direct plating of the cocktail (studies 1, 2, and 3) and manure and cocktail (studies 4 and 5) mixtures and compared with a most-probable-number (MPN)-immunomagnetic separation (IMS) method. The three-tube MPN combined preenrichment in gram-negative broth with confirmation using IMS. Five separate enumeration studies (study 1, sterile feces inoculated with 10(2) E. coli O157:H7 per g; study 2, nonsterile feces inoculated with 10(3) E. coli O157:H7 per g; study 3, nonsterile feces inoculated with 10(1) E. coli O157:H7 per g; study 4, sterile feces inoculated with 10(4) streptomycin-resistant E. coli O157:H7 per g; and study 5, sterile feces inoculated with 10(2) streptomycin-resistant E. coli O157:H7 per g) were conducted. These studies were performed to determine the precision, accuracy, and specificity at low and high levels of pathogen contamination in feces, using direct plating compared with the MPN-IMS methodology tested. There was an overall difference (P < 0.01) between direct plating and MPN-IMS methodologies, but this difference was biologically negligible due to the difference in least-squares means (0.29 +/- 0.10) being so low. The direct plating and MPN-IMS methods were correlated (r = 0.93). These results suggest that using the MPN-IMS procedures is an effective method of estimating E. coli O157 populations in naturally infected bovine fecal samples.


Subject(s)
Escherichia coli O157/isolation & purification , Food Contamination/prevention & control , Food Microbiology , Immunomagnetic Separation/standards , Animals , Bacteriological Techniques/methods , Bacteriological Techniques/standards , Cattle , Colony Count, Microbial/methods , Colony Count, Microbial/standards , Culture Media , Feces/microbiology , Immunomagnetic Separation/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...