Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38955468

ABSTRACT

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Subject(s)
Cytosol , Mitochondria , Prohibitins , RNA, Double-Stranded , RNA, Mitochondrial , Humans , Cytosol/metabolism , Mitochondria/metabolism , RNA, Double-Stranded/metabolism , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Cell Line, Tumor , Repressor Proteins/metabolism , Repressor Proteins/genetics , RNA Transport , Exoribonucleases/metabolism , Exoribonucleases/genetics , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Mitochondrial Proteins
2.
RNA ; 30(8): 1058-1069, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38719745

ABSTRACT

Identification of splice sites is a critical step in pre-messenger RNA (pre-mRNA) splicing because the definition of the exon/intron boundaries controls what nucleotides are incorporated into mature mRNAs. The intron boundary with the upstream exon is initially identified through interactions with the U1 small nuclear ribonucleoprotein (snRNP). This involves both base-pairing between the U1 snRNA and the pre-mRNA as well as snRNP proteins interacting with the 5' splice site (5'ss)/snRNA duplex. In yeast, this duplex is buttressed by two conserved protein factors, Yhc1 and Luc7. Luc7 has three human paralogs (LUC7L, LUC7L2, and LUC7L3), which play roles in alternative splicing. What domains of these paralogs promote splicing at particular sites is not yet clear. Here, we humanized the zinc finger (ZnF) domains of the yeast Luc7 protein in order to understand their roles in splice site selection using reporter assays, transcriptome analysis, and genetic interactions. Although we were unable to determine a function for the first ZnF domain, humanization of the second ZnF domain to mirror that found in LUC7L or LUC7L2 resulted in altered usage of nonconsensus 5'ss. In contrast, the corresponding ZnF domain of LUC7L3 could not support yeast viability. Further, humanization of Luc7 can suppress mutation of the ATPase Prp28, which is involved in U1 release and exchange for U6 at the 5'ss. Our work reveals a role for the second ZnF of Luc7 in splice site selection and suggests that different ZnF domains may have different ATPase requirements for release by Prp28.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Zinc Fingers , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , RNA Splice Sites , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA Splicing , RNA Precursors/genetics , RNA Precursors/metabolism , Alternative Splicing , Ribonucleoprotein, U1 Small Nuclear/metabolism , Ribonucleoprotein, U1 Small Nuclear/genetics , Introns/genetics
3.
J Biol Chem ; 300(1): 105557, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097186

ABSTRACT

Formins are large, multidomain proteins that nucleate new actin filaments and accelerate elongation through a processive interaction with the barbed ends of filaments. Their actin assembly activity is generally attributed to their eponymous formin homology (FH) 1 and 2 domains; however, evidence is mounting that regions outside of the FH1FH2 stretch also tune actin assembly. Here, we explore the underlying contributions of the tail domain, which spans the sequence between the FH2 domain and the C terminus of formins. Tails vary in length from ∼0 to >200 residues and contain a number of recognizable motifs. The most common and well-studied motif is the ∼15-residue-long diaphanous autoregulatory domain. This domain mediates all or nothing regulation of actin assembly through an intramolecular interaction with the diaphanous inhibitory domain in the N-terminal half of the protein. Multiple reports demonstrate that the tail can enhance both nucleation and processivity. In this study, we provide a high-resolution view of the alternative splicing encompassing the tail in the formin homology domain (Fhod) family of formins during development. While four distinct tails are predicted, we found significant levels of only two of these. We characterized the biochemical effects of the different tails. Surprisingly, the two highly expressed Fhod-tails inhibit processive elongation and diminish nucleation, while a third supports activity. These findings demonstrate a new mechanism of modulating actin assembly by formins and support a model in which splice variants are specialized to build distinct actin structures during development.


Subject(s)
Actins , Drosophila Proteins , Actin Cytoskeleton/metabolism , Actins/metabolism , Drosophila melanogaster , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Animals
4.
Nucleic Acids Res ; 51(22): 12428-12442, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37956322

ABSTRACT

The fidelity of splice site selection is critical for proper gene expression. In particular, proper recognition of 3'-splice site (3'SS) sequences by the spliceosome is challenging considering the low complexity of the 3'SS consensus sequence YAG. Here, we show that absence of the Prp18p splicing factor results in genome-wide activation of alternative 3'SS in S. cerevisiae, including highly unusual non-YAG sequences. Usage of these non-canonical 3'SS in the absence of Prp18p is enhanced by upstream poly(U) tracts and by their potential to interact with the first intronic nucleoside, allowing them to dock in the spliceosome active site instead of the normal 3'SS. The role of Prp18p in 3'SS fidelity is facilitated by interactions with Slu7p and Prp8p, but cannot be fulfilled by Slu7p, identifying a unique role for Prp18p in 3'SS fidelity. This fidelity function is synergized by the downstream proofreading activity of the Prp22p helicase, but is independent from another late splicing helicase, Prp43p. Our results show that spliceosomes exhibit remarkably relaxed 3'SS sequence usage in the absence of Prp18p and identify a network of spliceosomal interactions centered on Prp18p which are required to promote the fidelity of the recognition of consensus 3'SS sequences.


Subject(s)
RNA Splice Sites , Saccharomyces cerevisiae , Alternative Splicing , RNA Splicing , RNA Splicing Factors/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spliceosomes/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
RNA ; 29(8): 1099-1107, 2023 08.
Article in English | MEDLINE | ID: mdl-37137666

ABSTRACT

RT-PCR and northern blots have long been used to study RNA isoforms usage for single genes. Recent advancements in long-read sequencing have yielded unprecedented information about the usage and abundance of these RNA isoforms. However, visualization of long-read sequencing data remains challenging due to the high information density. To alleviate these issues, we have developed NanoBlot, an open-source R-package that generates northern blot and RT-PCR-like images from long-read sequencing data. NanoBlot requires aligned, positionally sorted and indexed BAM files. Plotting is based around ggplot2 and is easily customizable. Advantages of NanoBlot include a robust system for designing probes to visualize isoforms including excluding reads based on the presence or absence of a specified region, an elegant solution to representing isoforms with continuous variations in length, and the ability to overlay multiple genes in the same plot using different colors. We present examples of nanoblots compared to actual northern blot data. In addition to traditional gel-like images, the NanoBlot package can also output other visualizations such as violin plots and 3'-RACE-like plots focused on 3'-end isoforms visualization. The use of the NanoBlot package should provide a simple answer to some of the challenges of visualizing long-read RNA-sequencing data.


Subject(s)
RNA Isoforms , RNA , RNA/genetics , RNA Isoforms/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , Protein Isoforms/genetics , Alternative Splicing , Gene Expression Profiling/methods , Transcriptome
6.
bioRxiv ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36711521

ABSTRACT

The fidelity of splice site selection is thought to be critical for proper gene expression and cellular fitness. In particular, proper recognition of 3'-splice site (3'SS) sequences by the spliceosome is a daunting task considering the low complexity of the 3'SS consensus sequence YAG. Here we show that inactivating the near-essential splicing factor Prp18p results in a global activation of alternative 3'SS, many of which harbor sequences that highly diverge from the YAG consensus, including some highly unusual non-AG 3'SS. We show that the role of Prp18p in 3'SS fidelity is promoted by physical interactions with the essential splicing factors Slu7p and Prp8p and synergized by the proofreading activity of the Prp22p helicase. Strikingly, structure-guided point mutations that disrupt Prp18p-Slu7p and Prp18p-Prp8p interactions mimic the loss of 3'SS fidelity without any impact on cellular growth, suggesting that accumulation of incorrectly spliced transcripts does not have a major deleterious effect on cellular viability. These results show that spliceosomes exhibit remarkably relaxed fidelity in the absence of Prp18p, and that new 3'SS sampling can be achieved genome-wide without a major negative impact on cellular fitness, a feature that could be used during evolution to explore new productive alternative splice sites.

7.
Proc Natl Acad Sci U S A ; 119(31): e2202473119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35878033

ABSTRACT

Many small nucleolar RNAs (snoRNA)s are processed from introns of host genes, but the importance of splicing for proper biogenesis and the fate of the snoRNAs is not well understood. Here, we show that inactivation of splicing factors or mutation of splicing signals leads to the accumulation of partially processed hybrid messenger RNA-snoRNA (hmsnoRNA) transcripts. hmsnoRNAs are processed to the mature 3' ends of the snoRNAs by the nuclear exosome and bound by small nucleolar ribonucleoproteins. hmsnoRNAs are unaffected by translation-coupled RNA quality-control pathways, but they are degraded by the major cytoplasmic exonuclease Xrn1p, due to their messenger RNA (mRNA)-like 5' extensions. These results show that completion of splicing is required to promote complete and accurate processing of intron-encoded snoRNAs and that splicing defects lead to degradation of hybrid mRNA-snoRNA species by cytoplasmic decay, underscoring the importance of splicing for the biogenesis of intron-encoded snoRNAs.


Subject(s)
RNA Splicing , RNA Stability , RNA, Messenger , RNA, Small Nucleolar , Introns , RNA, Messenger/genetics , RNA, Small Nucleolar/genetics
8.
Cell Rep ; 39(8): 110898, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35613576

ABSTRACT

The N6-methyladenosine modification (m6A) modulates eukaryotic mRNA decay. In this issue of Cell Reports, Boo et al. describe a mechanism for degradation of m6A-containing mRNAs by 5'-decapping, which occurs through the recruitment of the degradation factor UPF1 via the m6A reader protein YTHDF2.


Subject(s)
Adenosine , RNA-Binding Proteins , Adenosine/metabolism , Animals , Feathers/metabolism , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
9.
RNA ; 27(12): 1545-1556, 2021 12.
Article in English | MEDLINE | ID: mdl-34497070

ABSTRACT

The expression of bromodomain-containing proteins that regulate chromatin structure and accessibility must be tightly controlled to ensure the appropriate regulation of gene expression. In the yeast S. cerevisiae, Bromodomain Factor 2 (BDF2) expression is extensively regulated post-transcriptionally during stress by RNase III-mediated decay (RMD), which is triggered by cleavage of the BDF2 mRNA in the nucleus by the RNase III homolog Rnt1p. Previous studies have shown that RMD-mediated down-regulation of BDF2 is hyperactivated in osmotic stress conditions, yet the mechanisms driving the enhanced nuclear cleavage of BDF2 RNA under these conditions remain unknown. Here, we show that RMD hyperactivation can be detected in multiple stress conditions that inhibit mRNA export, and that Rnt1p remains primarily localized in the nucleus during salt stress. We show that globally inhibiting mRNA nuclear export by anchoring away mRNA biogenesis or export factors out of the nucleus can recapitulate RMD hyperactivation in the absence of stress. RMD hyperactivation requires Rnt1p nuclear localization but does not depend on the BDF2 gene endogenous promoter, and its efficiency is affected by the structure of the stem-loop cleaved by Rnt1p. Because multiple stress conditions have been shown to mediate global inhibition of mRNA export, our results suggest that the hyperactivation of RMD is primarily the result of the increased nuclear retention of the BDF2 mRNA during stress.


Subject(s)
Cell Nucleus/metabolism , RNA Transport , RNA, Messenger/metabolism , Ribonuclease III/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Salt Stress , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/genetics , RNA, Messenger/genetics , Ribonuclease III/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics
10.
STAR Protoc ; 1(3): 100140, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33377034

ABSTRACT

We describe an RT-PCR protocol that allows high-resolution mapping of splicing products and isoforms using fluorescently labeled primers. Each species contains one fluorescent group allowing a direct comparison of the different isoforms despite size differences. A custom-size ladder enables the precise determination of cDNA lengths and discrimination of isoforms differing by less than five nucleotides on polyacrylamide gels. This protocol also allows the detection of products from in vitro splicing reactions, circumventing the need to use radiolabeled transcripts. For complete details on the use and execution of this protocol, please refer to Gabunilas and Chanfreau (2016).


Subject(s)
Protein Isoforms/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Alternative Splicing/genetics , Base Sequence/genetics , DNA Primers , DNA, Complementary/genetics , Humans , Nucleotides/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing/genetics , RNA-Seq/methods , Sequence Analysis, RNA/methods
11.
Cell Rep ; 31(10): 107754, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32521279

ABSTRACT

The nuclear RNA exosome is essential for RNA processing and degradation. Here, we show that the exosome nuclear-specific subunit Rrp6p promotes cell survival during heat stress through the cell wall integrity (CWI) pathway, independently of its catalytic activity or association with the core exosome. Rrp6p exhibits negative genetic interactions with the Slt2/Mpk1p or Paf1p elongation factors required for expression of CWI genes during stress. Overexpression of Rrp6p or of its catalytically inactive or exosome-independent mutants can partially rescue the growth defect of the mpk1Δ mutant and stimulates expression of the Mpk1p target gene FKS2. The rrp6Δ and mpk1Δ mutants show similarities in deficient expression of CWI genes during heat shock, and overexpression of the CWI gene HSP150 can rescue the stress-induced lethality of the mpk1Δrp6Δ mutant. These results demonstrate that Rrp6p moonlights independently from the exosome to ensure proper expression of CWI genes and to promote cell survival during stress.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Cell Survival/physiology
12.
Methods ; 176: 4-13, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31128237

ABSTRACT

3'-end poly(A)+ sequencing is an efficient and economical method for global measurement of mRNA levels and alternative poly(A) site usage. A common method involves oligo(dT)19V reverse-transcription (RT)-based library preparation and high-throughput sequencing with a custom primer ending in (dT)19. While the majority of library products have the first sequenced nucleotide reflect the bona fide poly(A) site (pA), a substantial fraction of sequencing reads arise from various mis-priming events. These can result in incorrect pA site calls anywhere from several nucleotides downstream to several kilobases upstream from the bona fide pA site. While these mis-priming events can be mitigated by increasing annealing stringency (e.g. increasing temperature from 37 °C to 42 °C), they still persist at an appreciable level (∼10%) and computational methods must be used to prevent artifactual calls. Here we present a bioinformatics workflow for precise mapping of poly(A)+ 3' ends and handling of artifacts due to oligo(dT) mis-priming and sample polymorphisms. We test pA site calling with three different read mapping programs (STAR, BWA, and BBMap), and show that the way in which each handles terminal mismatches and soft clipping has a substantial impact on identifying correct pA sites, with BWA requiring the least post-processing to correct artifacts. We demonstrate the use of this pipeline for mapping pA sites in the model eukaryote S. cerevisiae, and further apply this technology to non-polyadenylated transcripts by employing in vitro polyadenylation prior to library prep (IVP-seq). As proof of principle, we show that a fraction of tRNAs harbor CCU 3' tails instead of the canonical CCA tail, and globally identify 3' ends of splicing intermediates arising from inefficiently spliced transcripts.


Subject(s)
Molecular Sequence Annotation/methods , RNA-Seq/methods , 3' Untranslated Regions/genetics , Computational Biology/methods , Nucleotides/genetics , Poly A/genetics , Polyadenylation/genetics , RNA Splicing , RNA, Fungal/genetics , Saccharomyces cerevisiae/genetics
13.
Biochemistry ; 58(49): 4997-5010, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31738538

ABSTRACT

To date, 12 protein lysine methyltransferases that modify translational elongation factors and ribosomal proteins (Efm1-7 and Rkm 1-5) have been identified in the yeast Saccharomyces cerevisiae. Of these 12, five (Efm1 and Efm4-7) appear to be specific to elongation factor 1A (EF1A), the protein responsible for bringing aminoacyl-tRNAs to the ribosome. In S. cerevisiae, the functional implications of lysine methylation in translation are mostly unknown. In this work, we assessed the physiological impact of disrupting EF1A methylation in a strain where four of the most conserved methylated lysine sites are mutated to arginine residues and in strains lacking either four or five of the Efm lysine methyltransferases specific to EF1A. We found that loss of EF1A methylation was not lethal but resulted in reduced growth rates, particularly under caffeine and rapamycin stress conditions, suggesting EF1A interacts with the TORC1 pathway, as well as altered sensitivities to ribosomal inhibitors. We also detected reduced cellular levels of the EF1A protein, which surprisingly was not reflected in its stability in vivo. We present evidence that these Efm methyltransferases appear to be largely devoted to the modification of EF1A, finding no evidence of the methylation of other substrates in the yeast cell. This work starts to illuminate why one protein can need five different methyltransferases for its functions and highlights the resilience of yeast to alterations in their posttranslational modifications.


Subject(s)
Lysine/metabolism , Peptide Elongation Factor 1/chemistry , Peptide Elongation Factor 1/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Amino Acid Motifs , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
14.
Transcription ; 9(1): 41-46, 2018.
Article in English | MEDLINE | ID: mdl-29106321

ABSTRACT

The role of transcription factors (TFs) on nucleosome positioning, RNA polymerase recruitment, and transcription initiation has been extensively characterized. Here, we propose that a subset of TFs such as Reb1, Abf1, Rap1, and TFIIIB also serve a major function in partitioning transcription units by assisting the Nrd1p-Nab3p-Sen1p Pol II termination pathway.


Subject(s)
RNA Polymerase II/metabolism , Transcription Factors/metabolism , Transcription Termination, Genetic , Humans
15.
Enzymes ; 41: 299-329, 2017.
Article in English | MEDLINE | ID: mdl-28601225

ABSTRACT

Constitutive and regulated turnover of RNAs is necessary to eliminate aberrant RNA molecules and control the level of specific mRNAs to maintain homeostasis or to respond to signals in living cells. Modifications of nucleosides in specific RNAs are important in modulating the functions of these transcripts, but they can also dramatically impact their fate and turnover. This chapter will review how RNA modifications impact the activities of ribonucleases that target these RNAs for degradation or cleavage, focusing more particularly on tRNAs and mRNAs in eukaryotic cells. Many nucleoside modifications are important to promote proper folding of tRNAs, and the absence of specific modifications makes them susceptible to degradation by quality control pathways that eliminate improperly folded species. Modifications in tRNAs can also modulate their cleavage during stress or by fungal toxins that target modified nucleosides. Modifications of the cap structure found at the 5'-end of eukaryotic mRNAs are essential to control the degradation of these mRNAs. In addition, internal modifications of eukaryotic mRNAs can change their secondary structures or provide binding sites for reader proteins, which can dramatically impact their stability. Recent examples show that mRNA modifications play important roles in regulating mRNA stability during development, cellular differentiation and physiological responses. Finally, many modifications can impact microRNA- and siRNA-mediated gene regulation by direct or indirect effects. With the growing number of genomic techniques able to identify modifications genome wide, it is anticipated that novel chemical modifications or new modification sites will be identified, which will play additional regulatory functions for RNA turnover.


Subject(s)
Eukaryota/enzymology , Eukaryota/genetics , RNA Processing, Post-Transcriptional , RNA/chemistry , RNA/metabolism , Ribonucleases/metabolism , Eukaryotic Cells/enzymology , Eukaryotic Cells/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism
16.
Enzymes ; 41: xi, 2017.
Article in English | MEDLINE | ID: mdl-28601228
17.
RNA ; 23(4): 466-472, 2017 04.
Article in English | MEDLINE | ID: mdl-28053271

ABSTRACT

The RNA exosome is a conserved multiprotein complex that achieves a large number of processive and degradative functions in eukaryotic cells. Recently, mutations have been mapped to the gene encoding one of the subunits of the exosome, EXOSC3 (yeast Rrp40p), which results in pontocerebellar hypoplasia with motor neuron degeneration in human patients. However, the molecular impact of these mutations in the pathology of these diseases is not well understood. To investigate the molecular consequences of mutations in EXOSC3 that lead to neurological diseases, we analyzed the effect of three of the mutations that affect conserved residues of EXOSC3/Rrp40p (G31A, G191C, and W238R; G8A, G148C, and W195R, respectively, in human and yeast) in S. cerevisiae We show that the severity of the phenotypes of these mutations in yeast correlate with that of the disease in human patients, with the W195R mutant showing the strongest growth and RNA processing phenotypes. Furthermore, we show that these mutations affect more severely pre-ribosomal RNA processing functions of the exosome rather than other nuclear processing or surveillance functions. These results suggest that delayed or defective pre-rRNA processing might be the primary defect responsible for the pathologies detected in patients with mutations affecting EXOSC3 function in residues conserved throughout eukaryotes.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/genetics , Mutation , RNA Precursors/genetics , RNA Processing, Post-Transcriptional , RNA, Fungal/genetics , RNA, Ribosomal/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Conserved Sequence , Exosome Multienzyme Ribonuclease Complex/metabolism , Gene Expression Regulation, Fungal , Humans , Olivopontocerebellar Atrophies/genetics , Olivopontocerebellar Atrophies/metabolism , Olivopontocerebellar Atrophies/pathology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA Precursors/metabolism , RNA, Fungal/metabolism , RNA, Ribosomal/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
18.
Genome Res ; 26(10): 1363-1375, 2016 10.
Article in English | MEDLINE | ID: mdl-27540088

ABSTRACT

RNA polymerase II (Pol II) transcription termination by the Nrd1p-Nab3p-Sen1p (NNS) pathway is critical for the production of stable noncoding RNAs and the control of pervasive transcription in Saccharomyces cerevisiae To uncover determinants of NNS termination, we mapped the 3'-ends of NNS-terminated transcripts genome-wide. We found that nucleosomes and specific DNA-binding proteins, including the general regulatory factors (GRFs) Reb1p, Rap1p, and Abf1p, and Pol III transcription factors enhance the efficiency of NNS termination by physically blocking Pol II progression. The same DNA-bound factors that promote NNS termination were shown previously to define the 3'-ends of Okazaki fragments synthesized by Pol δ during DNA replication. Reduced binding of these factors results in defective NNS termination and Pol II readthrough. Furthermore, inactivating NNS enables Pol II elongation through these roadblocks, demonstrating that effective Pol II termination depends on a synergy between the NNS machinery and obstacles in chromatin. Consistent with this finding, loci exhibiting Pol II readthrough at GRF binding sites are depleted for upstream NNS signals. Overall, these results underscore how RNA termination signals influence the behavior of Pol II at chromatin obstacles, and establish that common genomic elements define boundaries for both DNA and RNA synthesis machineries.


Subject(s)
DNA Replication , Genome, Fungal , RNA, Untranslated/genetics , Transcription Elongation, Genetic , Transcription Termination, Genetic , DNA/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Shelterin Complex , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
J Biol Chem ; 289(44): 30511-30524, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25231983

ABSTRACT

Methylation of various components of the translational machinery has been shown to globally affect protein synthesis. Little is currently known about the role of lysine methylation on elongation factors. Here we show that in Saccharomyces cerevisiae, the product of the EFM3/YJR129C gene is responsible for the trimethylation of lysine 509 on elongation factor 2. Deletion of EFM3 or of the previously described EFM2 increases sensitivity to antibiotics that target translation and decreases translational fidelity. Furthermore, the amino acid sequences of Efm3 and Efm2, as well as their respective methylation sites on EF2, are conserved in other eukaryotes. These results suggest the importance of lysine methylation modification of EF2 in fine tuning the translational apparatus.


Subject(s)
Methyltransferases/physiology , Peptide Elongation Factor 2/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Catalytic Domain , Conserved Sequence , Methylation , Methyltransferases/chemistry , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Biosynthesis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry
20.
Mol Cell Biol ; 34(15): 2903-16, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24865971

ABSTRACT

Histidine protein methylation is an unusual posttranslational modification. In the yeast Saccharomyces cerevisiae, the large ribosomal subunit protein Rpl3p is methylated at histidine 243, a residue that contacts the 25S rRNA near the P site. Rpl3p methylation is dependent upon the presence of Hpm1p, a candidate seven-beta-strand methyltransferase. In this study, we elucidated the biological activities of Hpm1p in vitro and in vivo. Amino acid analyses reveal that Hpm1p is responsible for all of the detectable protein histidine methylation in yeast. The modification is found on a polypeptide corresponding to the size of Rpl3p in ribosomes and in a nucleus-containing organelle fraction but was not detected in proteins of the ribosome-free cytosol fraction. In vitro assays demonstrate that Hpm1p has methyltransferase activity on ribosome-associated but not free Rpl3p, suggesting that its activity depends on interactions with ribosomal components. hpm1 null cells are defective in early rRNA processing, resulting in a deficiency of 60S subunits and translation initiation defects that are exacerbated in minimal medium. Cells lacking Hpm1p are resistant to cycloheximide and verrucarin A and have decreased translational fidelity. We propose that Hpm1p plays a role in the orchestration of the early assembly of the large ribosomal subunit and in faithful protein production.


Subject(s)
Histidine/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Histidine/genetics , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribosomal Proteins/genetics , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...