Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 46(15): 3637-3640, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329244

ABSTRACT

We propose a parabolic W-type thulium-doped fiber for the 1.7 µm high-energy femtosecond pulsed laser. Despite its attractive normal dispersion, the fiber offers high gain in 1.7 µm region thanks to its distributed short-pass filtering effect. With a proper dispersion management in an all-fiber chirped pulse amplification (CPA) scheme, we demonstrate so far the highest pulse energy of 128.0 nJ in a stable pulse of 174 fs in the 1.7-1.8 µm region, which marks above an order of magnitude improvement in pulse energy while exhibiting the shortest pulse duration among fiber-based CPA works at 1.7 µm. Hence, we provide a pathway to an energy scalable and efficient femtosecond laser at 1.7 µm via a compact and elegant all-fiber solution.

2.
Opt Express ; 28(12): 17570-17580, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32679963

ABSTRACT

We report an all-fiber high pulse energy ultrafast laser and amplifier operating at the short wavelength side of the thulium (Tm) emission band. An in-house W-type normal dispersion Tm-doped fiber (NDTDF) exhibits a bending-induced distributed short-pass filtering effect that efficiently suppresses the otherwise dominant long wavelength emission. By changing the bending diameter of the fiber, we demonstrated a tunable mode-locked Tm-doped fiber laser with a very wide tunable range of 152 nm spanning from 1740 nm to 1892 nm. Pulses at a central wavelength of 1755 nm were able to be amplified in an all-fiber configuration using the W-type NDTDF, without the use of any artificial short-pass filter or pulse stretcher. The all-fiber amplifier delivers 2.76 ps pulses with an energy of ∼32.7 nJ without pulse break-up, due to the normal dispersion nature of the gain fiber, which marks so far, the highest energy amongst fiber lasers in the 1700 nm-1800 nm region.

SELECTION OF CITATIONS
SEARCH DETAIL
...