Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2402472, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813745

ABSTRACT

Despite significant advancements, current self-healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self-healable and conductive copolymer, poly(ionic liquid-co-acrylic acid) (PIL-co-PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion-dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self-healing abilities and demonstrates enhanced mechanical properties and electrical conductivity. Moreover, the PIL-co-PAA/TPU films showcase alkaline-responsive behavior, a feature that broadens their applicability in dynamic environments. Through systematic characterization, including thermogravimetric analysis, tensile testing, and electrical properties measurements, the mechanisms behind the improved performance and functionality of these films are elucidated. The conductivities and ultimate tensile strength (σuts) of the PIL-co-PAA/TPU films regain 80% under 8 h healing process. To extend the applications for wearable devices, the self-healing properties of commercial cotton fabrics coated with the self-healable PIL-co-PAA are also investigated, demonstrating both self-healing and electrical properties. This study advances the understanding of self-healable conductive polymers and opens new avenues for their application in wearable technology.

2.
Small ; 20(28): e2400491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38456574

ABSTRACT

Multiresponsive materials with reversible and durable characteristics are indispensable because of their promising applications in environmental change detections. To fabricate multiresponsive materials in mass production, however, complex reactions and impractical situations are often involved. Herein, a dual responsive (light and pH) spiropyran-based smart sensor fabricated by a simple layer-by-layer (LbL) assembly process from upcycled thermoplastic polyester elastomer (TPEE) materials derived from recycled polyethylene terephthalate (r-PET) is proposed. Positively charged chitosan solutions and negatively charged merocyanine-COOH (MC-COOH) solutions are employed in the LbL assembly technique, forming the chitosan-spiropyran deposited TPEE (TPEE-CH-SP) film. Upon UV irradiation, the spiropyran-COOH (SP-COOH) molecules on the TPEE-CH-SP film undergo the ring-opening isomerization, along with an apparent color change from colorless to purple, to transform into the MC-COOH molecules. By further exposing the TPEE-CH-MC film to hydrogen chloride (HCl) and nitric acid (HNO3) vapors, the MC-COOH molecules can be transformed into protonated merocyanine-COOH (MCH-COOH) with the simultaneous color change from purple to yellow.

3.
ACS Appl Mater Interfaces ; 16(2): 2716-2725, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38085978

ABSTRACT

Block copolymer composite electrolytes have gained extensive attention for their promising performance in ionic conductivity and mechanical properties, making them valuable for future technologies. The control of the ionic conductivity through the self-assembly of block copolymers, however, remains a great challenge, especially in confined environments. In this study, we prepare block copolymer composite electrolytes using polystyrene-block-poly(ethylene oxide) (PS-b-PEO, SEO) as the polymer matrix and anodic aluminum oxide (AAO) templates as the ceramic skeleton. The self-assembly of SEO creates nanoscale ion transport pathways in the PEO regions through ionic interactions with lithium salts. The nanopores of the AAO templates provide a confined environment for complex phase separation of SEO controlled by selective solvent vapor annealing. Our findings demonstrate that transforming self-assembled SEO structures allows for precise control of ion transport pathways with cylindrical structures exhibiting 20 times higher ionic conductivities than those of helical structures. For AAO templates with pore diameters of 20 nm (SEO-LiTFSI@AAO-20), the ionic conductivities are approximately 410 times higher than those with pore diameters of 200 nm (SEO-LiTFSI@AAO-200), owing to the larger specific surface areas within the smaller nanopores. Utilizing the self-assembly of SEO not only enables the construction of vertically aligned ion transport channels on various scales but also offers a fascinating approach to tailor the conductive capabilities of composite electrolytes, enhancing the ion transport efficiency and allowing for the flexible design of block copolymer composite electrolytes.

4.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36234553

ABSTRACT

Lithium-rich cathodes have excess lithium in the transition metal layer and exhibit an extremely high specific capacity and good energy density. However, they still have some disadvantages. Here, we propose LiCoMnO4, a new nanolayer coating material with a spinel structure, to modify the surface of lithium cathode oxide (Li7/6Mn1/2Ni1/6Co1/6O2) with a layered structure. The designed cathode with nanolayer spinel coating delivers an excellent reversible capacity, outstanding rate capability, and superior cycling ability whilst exhibiting discharge capacities of 300, 275, 220, and 166 mAh g-1 at rates of 0.1 C at 2.0-4.8 V formation and 0.1, 1, and 5 C, respectively, between 2.0 and 4.6 V. The cycling ability and voltage fading at a high operational voltage of 4.9 V were also investigated, with results showing that the nanolayer spinel coating can depress the surface of the lithium cathode oxide layer, leading to phase transformation that enhances the electrochemical performance.

5.
ACS Nano ; 11(6): 5826-5835, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28521102

ABSTRACT

Traditional wound care methods include wound infection control, adequate nutritional supplements, education of changing position every 2-3 h to avoid tissue hypoxia, vacuum assistant closure, debridement, skin graft, and tissue flap. Electric current stimulation, ultrasound, laser, and hydrotherapy have emerged as adjuvant therapies. However, most, if not all, of these therapies are expensive, and the treatment results are variable. The development of the active methods to improve wound healing is mandatory. CO2 administration has been known to improve microcirculation and local oxygen supply that are beneficial to wound healing. Here, the metal ion-ligand coordination nanoarchitecture was designed to reveal NIR light-induced CO2 generation for wound healing. The administration simply topically dropped the colloidal solution on the incisional wound, followed by exposure of near-infrared (NIR) lamp to yield CO2, resulting in the observation of the accelerated wound healing.


Subject(s)
Carbon Dioxide/administration & dosage , Wound Healing/drug effects , Bicarbonates/chemistry , Carbon Dioxide/chemistry , Carbon Dioxide/pharmacology , Colloids/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Drug Delivery Systems , Female , HeLa Cells , Humans , Infrared Rays , Ligands , Nanoshells/chemistry , Sulfides/chemistry
6.
ACS Nano ; 10(12): 11027-11036, 2016 12 27.
Article in English | MEDLINE | ID: mdl-28024357

ABSTRACT

Carbon monoxide (CO) causes the dysfunction of mitochondria to induce the apoptosis of cancer cells giving a promising choice as an emerging treatment. The currently reported CO-based complexes still suffer from many limitations. Synthesis of CO-release carriers in the manner of on-demand control is highly anticipated. In this study, we present a near-infrared (NIR) light-responsive CO-delivery nanocarrier, a PEGylated iron carbonyl derivatized Prussian blue (PB) nanoparticle (NP). Taking the structural characteristic containing Fe3+-N≡C-Fe2+ unit, the -CN- served as the active sites for the coordination of iron carbonyl, while the surface Fe sites chelated with the amine-functionalized polyethylene glycol (NH2-PEG6000-NH2) to yield PEGylated PB NPs carrying CO. The control of light intensity and exposure period is important to release the amount of CO as well as to deliver the hyperthermia effect. The combination therapy including CO and photothermal treatments displayed a synergistic effect against cancer cells. Importantly, the release of CO is inert in the blood circulation without NIR irradiation. The blood oxygen saturation measured by the pulse oximeter and the HCO3, tCO2, and pH values analyzed by the blood assay revealed the steady status from the mice studies, showing no acute CO poisoning.

7.
ACS Appl Mater Interfaces ; 8(23): 14470-80, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27228281

ABSTRACT

Iron oxide nanoparticles (IONPs)-carbon (C) hybrid zero-dimensional nanostructures normally can be categorized into core-shell and yolk-shell architectures. Although IONP-C is a promising theranostic nanoagent, the in vivo study has surprisingly been less described. In addition, little effort has strived toward the fabrication of yolk-shell compared to the core-shell structures. In this context, we synthesized a yolk-shell type of the silica-coated hollow carbon nanospheres encapsulating IONPs cluster, which can be dispersed in aqueous solution for systemic studies in vivo, via the preparation involving the mixed micellization, polymerization/hollowing, sol-gel (hydration-condensation), and pyrolysis processes. Through a surface modification of the polyethylenimine followed by the sol-gel process, the silica shell coating was able to escape from condensing and sintering courses resulting in aggregation, due to the annealing. Not limited to the well-known functionalities in magnetical targeting and magnetic resonance (MR) imaging for IONP-C hybrid structures, we expanded this yolk-shell NPs as a near-infrared (NIR) light-responsive echogenic nanoagent giving an enhanced ultrasound imaging. Overall, we fabricated the NIR sensitive yolk-shell IONP-C to activate ultrasound imaging and photothermal ablation under magnetically and MR imaging guided therapy.


Subject(s)
Carbon/chemistry , Ferric Compounds/chemistry , Magnetic Resonance Imaging/methods , Nanospheres/chemistry , Silicon Dioxide/chemistry , Ultrasonography/methods , Fever , Infrared Rays
8.
BMC Vet Res ; 8: 248, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23270335

ABSTRACT

BACKGROUND: Biomarkers for the early prediction of canine acute kidney injury (AKI) are clinically important. Recently, neutrophil gelatinase-associated lipocalin (NGAL) was found to be a sensitive biomarker for the prediction of human AKI at a very early stage and the development of AKI after surgery. However, NGAL has not yet been studied with respect to dog kidney diseases. The application of NGAL canine AKI was investigated in this study. RESULTS: The canine NGAL gene was successfully cloned and expressed. Polyclonal antibodies against canine NGAL were generated and used to develop an ELISA for measuring NGAL protein in serum and urine samples that were collected from 39 dogs at different time points after surgery.AKI was defined by the standard method, namely a serum creatinine increase of greater than or equal to 26.5 µmol/L from baseline within 48 h. At 12 h after surgery, compared to the group without AKI (12 dogs), the NGAL level in the urine of seven dogs with AKI was significantly increased (median 178.4 pg/mL vs. 88.0 pg/mL), and this difference was sustained to 72 h. CONCLUSION: As the increase in NGAL occurred much earlier than the increase in serum creatinine, urine NGAL seems to be able to serve as a sensitive and specific biomarker for the prediction of AKI in dogs.


Subject(s)
Acute Kidney Injury/veterinary , Dog Diseases/urine , Enzyme-Linked Immunosorbent Assay/veterinary , Lipocalins/urine , Acute Kidney Injury/pathology , Acute Kidney Injury/urine , Animals , Biomarkers/urine , Dog Diseases/pathology , Dogs , Female , Male , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...