Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Chemistry ; 30(34): e202400333, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38639068

ABSTRACT

The selective hydrogenation of furfural (FFA) to furfuryl alcohol (FA) is regarded as attractive transformation to achieve the sustainable synthesis of value-added chemicals from biomass resources. However, the conventional supported catalysts are significantly restricted by their narrow pore size, ununiform dispersion and easy leaching or aggregation of catalytic sites. Herein, we designed hollow UiO-66-NH2 as the support to encapsulate Pd nanoparticles (Pd@H-UiO-66-NH2) to achieve the highly active and selective conversion of FFA to FA. Benefiting from the void-confinement effect and substrate enrichment of hollow structure, as well as the surface wrinkles, the as-prepared catalyst Pd@H-UiO-66-NH2 exhibited 96.8 % conversion of FFA with satisfactory selectivity reaching up to 92.4 % at 80 °C, 0.5 MPa H2 in isopropanol solvent within 6 h. More importantly, as-prepared Pd@H-UiO-66-NH2 catalyst exhibited excellent long-term stability, as well as good universality toward a series of hydrogenation of unsaturated hydrocarbons.

2.
ACS Appl Mater Interfaces ; 16(6): 7364-7373, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38303137

ABSTRACT

Catalysis has played a decisive role in the development of unique chemical reactions to produce important chemicals. However, conventional stepwise synthetic routes that rely on individual catalysts to promote each step often suffer from ponderous processes for the isolation of intermediates that result in massive material losses and large economic expenditures. In addition, traditional powder forms of these catalysts suffer from poor processability and recoverability. Herein, we designed and prepared a hierarchical metal-organic framework (MOF) composite monolithic catalyst IL-Au@UiO-66-NH2/CMC that contains integrated acid (Zr4+), base (ionic liquid (IL)), and metal sites (Au nanoparticles (NPs)) to promote the one-pot preparation of cyclic carbonates from styrene derivatives and CO2. Highly dispersed Au NPs, IL 1-aminoethyl-3-methylimidazolium bromide ([C2NH2 MIM] [Br]), and MOF-positioned Lewis acid sites within this composite aerogel are separately responsible for catalyzing selective epoxidation of the styrene derivatives and the subsequent cycloaddition reaction of CO2 with intermediate styrene oxides. Importantly, inclusion of the imidazolium-based IL effectively modulates the size and chemical microenvironment of the Au NPs via electrostatic protection, leading to catalyst stability and its selective oxidation of styrene. Benefiting from the rapid mass transfer and high exposure of active sites within the pore-rich hierarchical nanostructure, IL-Au@UiO-66-NH2/CMC promotes high conversion (90.5%) of the styrene and selectivity (80.5%) for styrene carbonate (SC) formation in the one-pot process, a performance level that far exceeds those of related catalysts containing only Au NPs or IL (the selectivity of SC < 42%). Furthermore, the composite aerogel catalyst can be readily separated and recycled at least five times without a remarkable loss of activity and selectivity. The controllable integration of various active components in the hierarchical MOF composite aerogel herein should serve as the foundation for the design of multifunctional monolithic catalysts for other valuable tandem processes.

3.
J Colloid Interface Sci ; 658: 313-323, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38113540

ABSTRACT

The applications of hierarchically porous metal-organic frameworks (HP-MOFs) against traditional microporous counterparts for oxidative desulfurization (ODS) have triggered wide research interests due to their highly exposed accessible active sites and fast mass transfer of substrate molecules, particularly for the large-sized refractory sulfur compounds. Herein, a series of hierarchically porous amino-functionalized Zr-MOFs (HP-UiO-66-NH2-X) network with controllable mesopore sizes (3.5-9.2 nm) were firstly prepared through a template-free method, which were further utilized as anchoring support to bind the active phosphomolybdic acid (PMA) via the strong host-guest interaction to catalyze the ODS reaction. Benefitting from the hierarchically porous structure, accessible active sites and the strong host-guest interaction, the resultant PMA/HP-UiO-66-NH2-X exhibited excellent ODS performance, of which, the PMA/HP-UiO-66-NH2-9 with an appropriate mesopore size (4.0 nm) showed the highest catalytic activity, achieving a 99.9% removal of dibenzothiophene (DBT) within 60 min at 50 °C, far exceeding the microporous sample and PMA/HP-UiO-66. Furthermore, the scavenger experiments confirmed that •OH radical was the main reactive species and the density functional theory (DFT) calculations revealed that electron transfer (from amino group to PMA) made PMA react more easily with oxidant, thereby generating more •OH radical to promote the ODS reaction. Finally, from the industrial point of view, the powdered MOF nanoparticles (NPs) were in situ grown on the carboxymethyl cellulose (CMC) substrates and shaped into monolithic MOF-based catalysts, which still exhibited satisfying ODS performance in the case of model real fuel with good reusability, indicating its potential industrial application prospect.

4.
Inorg Chem ; 62(49): 20528-20536, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38019645

ABSTRACT

Hybridization of metal-organic frameworks (MOFs) and homogeneous ionic liquids (ILs) endows the heterogeneous composite with high porosity and accessible multiple active sites (e.g., acidic or basic sites), which exhibits great potential in CO2 capture and conversion. Nevertheless, the majority of MOF composites are synthesized as powders, significantly restricting their practical applications due to inherent problems such as poor handling properties, high pressure drops, and mechanical instability. Thus, it is crucial to shape MOF composites into various monoliths that allow efficient processing, especially for industrial purposes. In this work, a hierarchical ILs@nanoMOF composite gel (H-IL@UiO-66-gel) featuring both intraparticle micropores and interparticle mesopores and multiple active sites was successfully fabricated by a two-step approach. Benefiting from the integrated advantages of the hierarchically porous MOF for enhanced mass transfer and affinity of ILs for activating CO2 molecules, the resultant H-IL@UiO-66-gel exhibits excellent uptake of macromolecules and catalytic activity toward CO2 cycloaddition with epoxides under moderate conditions, far beyond the traditional microporous IL@UiO-66-gel and unfunctionalized H-UiO-66-gel. Furthermore, the H-IL@UiO-66 composite monolith can be effortlessly separated and reused at least three times without depletion of catalytic activity. It is believed that this fabrication method for the shaping of MOF composites is highly versatile and can be extended to other types of MOFs for various application fields.

5.
Chem Asian J ; 18(21): e202300689, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37704571

ABSTRACT

A core-shell structured Pd@TS-1@meso-SiO2 catalyst with confined Pd nanometals has been fabricated by one-pot synthesis, impregnation method and sol-gel method. With the promotion of acid sites and protection of mesoporous silica shell, Pd@TS-1@meso-SiO2 shows higher activity than commercial comparison and higher stability than sample without mesoporous silica shell in the hydrogenation of nitrobenzene. The schematic illustration of the synergy effect is also proposed.

6.
ACS Nano ; 17(18): 18217-18226, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37668497

ABSTRACT

The high salinity of seawater often strongly affects the activity and stability of photocatalysts utilized for photodriven seawater splitting. The current investigation is focused on the photocatalyst H-TiO2/Cu2O, comprised of hydroxyl-enriched hollow mesoporous TiO2 microspheres containing incorporated Cu2O nanoparticles. The design of H-TiO2/Cu2O is based on the hypothesis that the respective hollow and mesoporous structure and hydrophilic surfaces of TiO2 microspheres would stabilize Cu2O nanoparticles in seawater and provide efficient and selective proton adsorption. H-TiO2/Cu2O shows hydrogen production performances of 45.7 mmol/(g·h) in simulated seawater and 17.9 mmol/(g·h) in natural seawater, respectively. An apparent quantum yield (AQY) in hydrogen production of 18.8% in water (and 14.9% in natural seawater) was obtained at 365 nm. Moreover, H-TiO2/Cu2O displays high stability and can maintain more than 90% hydrogen evolution activity in natural seawater for 30 h. A direct mass- and energy- transfer mechanism is proposed to clarify the superior performance of H-TiO2/Cu2O in seawater splitting.

7.
Chem Commun (Camb) ; 59(47): 7275-7278, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37227003

ABSTRACT

Uncovering an efficient and stable photocatalytic system for seawater splitting is a highly desirable but challenging goal. Herein, Cd0.2Zn0.8S@Silicalite-1 (CZS@S-1) composites, in which CZS is embedded in the hierarchical zeolite S-1, were prepared and show remarkably high activity, stability and salt resistance in seawater.


Subject(s)
Zeolites , Cadmium , Seawater , Hydrogen , Zinc
8.
Chemistry ; 29(14): e202202655, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36414543

ABSTRACT

As a new class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs) assembled from building blocks by hydrogen bonds have gained increasing attention. HOFs benefit from advantages including mild synthesis, easy purification, and good recyclability. However, some HOFs transform into unstable frameworks after desolvation, which hinders their further applications. Nowadays, the main challenges of developing HOFs lie in stability improvement, porosity establishment, and functionalization. Recently, more and more stable and permanently porous HOFs have been reported. Of all these design strategies, stronger charge-assisted hydrogen bonds and coordination bonds have been proven to be effective for developing stable, porous, and functional solids called hybrid HOFs, including ionic and metallized HOFs. This Review discusses the rational design synthesis principles of hybrid HOFs and their cutting-edge applications in selective inclusion, proton conduction, gas separation, catalysis and so forth.

9.
ACS Appl Mater Interfaces ; 14(7): 9231-9241, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35138791

ABSTRACT

Lithium-sulfur (Li-S) batteries are considered promising next-generation energy storage systems due to their high energy density and low cost. However, their practical application still faces challenges such as the "shuttle effect" caused by polysulfides (LiPS). In this work, we use environmentally friendly bacterial cellulose (BC) as the substrate and prepare a flexible Ni-containing coordination polymer-modified carbonized BC interlayer (Ni-CBC). The combined electrochemical theoretical analysis shows that Ni-CBC not only captures LiPS effectively but also facilitates the electrochemical conversion of the adsorbed LiPS. As a result of these favorable features, the battery with the Ni-CBC interlayer delivers a stable discharge performance at 0.2C during long charge-discharge cycles and a high rate capacity of 852 mAh g-1 at 2C. This work suggests that cellulose-based materials with tailored functionality can improve the performance of Li-S batteries.

10.
ACS Appl Mater Interfaces ; 14(4): 5887-5896, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35045705

ABSTRACT

Carbon materials with hierarchical morphologies, pores, and compositions have attracted extraordinary attention due to their unique structural advantages and widespread applications. However, their controllable synthesis remains a grand challenge. Herein, a solvent-mediated strategy was demonstrated for the preparation of an urchin-like superstructure via modulating the hydrothermal condition (acetic acid/water ratio) of metal-organic frameworks (MOFs). The direct pyrolysis of a hierarchical NUS-6 precursor produced a well-defined carbon-based composite consisting of sulfur-doped carbon (SC) and HfO2 with an urchin-like morphology and micro-/mesoporosity, while the doped S sites and oxygen vacancies of HfO2 can help to anchor and activate Pd nanoparticles (NPs) through the strong host-guest interaction, which was further confirmed by the calculated results of the binding energy and differential charge density through density functional theory (DFT). The synthesized Pd@SC/HfO2 composite exhibited extremely high catalytic activity and stability toward the water-phase hydrodeoxygenation of vanillin (conversion >99%, selectivity >99%), as well as good universality for the hydrogenation of a series of unsaturated hydrocarbons in an aqueous system. Remarkably, the catalytic activity and structural stability of Pd@SC/HfO2 were largely maintained even after successive 10 cycles.

11.
Chem Asian J ; 16(22): 3743-3747, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34546651

ABSTRACT

Process intensification, targeting the maximization of spatial-temporal productivity utilizing minimum energy and resources has always been the constant trends especially in chemical industry. In this regard, tandem reactions that are able to perform a multi-step reaction in a single pot by eliminating costly separation steps have been viewed as a typical paradigm. However, a spatial isolation of varied active sites with a controlled manner in a single catalyst to avoid deactivation and work synergistically is a challenging problem yet sometimes being overlooked. In this work, a spatial base-metal core-shell structured catalyst with wrinkled surface was successfully fabricated by a direct homoepitaxial growth method in an acid/water system, which exhibited increased hydrophobicity, exposure of active sites and significantly improved product selectivity towards one-pot Knoevenagel condensation-hydrogenation tandem reaction compared with the uncoated catalyst. Meanwhile, the catalytic performance was largely retained and the structural stability was maintained even after successive 8 cycles, which shows great promise for industrial applications.

12.
Chemistry ; 27(64): 15992-15999, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34431564

ABSTRACT

Molybdenum sulfide (MoS2 ) is considered as an alternative material for commercial platinum catalysts for electrocatalytic hydrogen evolution reaction (HER). Improving the apparent HER activity of MoS2 to a level comparable to that of Pt is an essential premise for the commercial use of MoS2 . In this work, a Zn-doping strategy is proposed to enhance the HER performance of MoS2 . It is shown that tiny Zn doping into MoS2 leads to the enhancement of the electrochemical surface area, increases in proportion of HER active 1T phase in the material and formation of catalytic sites of higher intrinsic activity. These benefits result in a high-performance HER electrocatalyst with a low overpotential of 190 mV(@10 mA cm-2 ) and a low Tafel slope of 58 mV dec-1 . The origin for the excellent electrochemical performance of the doped MoS2 is rationalized with both experimental and theoretical investigations.

13.
Chemistry ; 27(35): 9124-9128, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33788984

ABSTRACT

Alloying platinum (Pt) with transition metals (M), as an established class of electrocatalysts, reduces the use of Pt and improves the electrocatalytic performance. However, the stability of transition metals in nanostructured platinum alloys is a fundamental and practical problem in electrocatalysis, due to leaching of transition metals under acidic operating condition. Here, a corrosion method has been developed for a Pt-Cu electrocatalyst with high activity (6.6 times that of commercial Pt/C) and excellent stability for the methanol oxidation reaction (MOR) under acidic operating conditions. The mechanism of formation has been studied, and possible mesostructured re-formation and atomic re-organization have been proposed. This work offers an effective strategy for the facile synthesis of a highly acid-stable PtM alloying and opens a door to high-performance design for electrocatalysts.

14.
Small ; 17(22): e2002811, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32734686

ABSTRACT

Carbon-based nanomaterials have been widely utilized in catalysis and energy-related fields due to their fascinating properties. However, the controllable synthesis of porous carbon with refined morphology is still a formidable challenge due to inevitable aggregation/fusion of resulted carbon particles during the high-temperature synthetic process. Herein, a hierarchically oriented carbon-structured (fiber-like) composite is fabricated by simultaneously taking advantage of a confined pyrolysis strategy and disparate bond environments within metal-organic frameworks (MOFs). In the resultant composite, the oriented carbon provides a fast mass (molecule/ion/electron) transfer efficiency; the doping-N atoms can anchor or act as active sites; the mesoporous SiO2 (mSiO2 ) shell not only effectively prevents the derived carbon or active metal nanoparticles (NPs) from aggregation or leaching, but also acts as a "polysulfide reservoir" in the Li-S batteries to suppress the "shuttle" effect. Benefiting from these advantages, the synthesized composite Pd@NDHPC@mSiO2 (NDHPC means N-doped hierarchically porous carbon) exhibits extremely high catalytic activity and stability toward the one-pot Knoevenagel condensation-hydrogenation reaction. Furthermore, the oriented NDHPC@mSiO2 manifests a boosted capacity and cycling stability in Li-S batteries compared to the counterpart that directly pyrolyzes without silica protection. This report provides an effective strategy of fabricating hierarchically oriented carbon composites for catalysis and energy storage applications.

15.
Chem Commun (Camb) ; 56(46): 6297-6300, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32386287

ABSTRACT

Spatial catalytic acid-base-Pd triple-sites of a hierarchical core-shell structure have been successfully constructed for a three-step reaction, and exhibited excellent catalytic activity and stability. A catalytic mechanism has been systematically studied via single one- and two-step reactions, and possible molecular reactions have been proposed.

16.
Nano Lett ; 20(5): 3122-3129, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32343586

ABSTRACT

A highly efficient photoenergy conversion is strongly dependent on the cumulative cascade efficiency of the photogenerated carriers. Spatial heterojunctions are critical to directed charge transfer and, thus, attractive but still a challenge. Here, a spatially ternary titanium-defected TiO2@carbon quantum dots@reduced graphene oxide (denoted as VTi@CQDs@rGO) in one system is shown to demonstrate a cascade effect of charges and significant performances regarding the photocurrent, the apparent quantum yield, and photocatalysis such as H2 production from water splitting and CO2 reduction. A key aspect in the construction is the technologically irrational junction of Ti-vacancies and nanocarbons for the spatially inside-out heterojunction. The new "spatial heterojunctions" concept, characteristics, mechanism, and extension are proposed at an atomic-/nanoscale to clarify the generation of rational heterojunctions as well as the cascade electron transfer.

17.
Nanoscale ; 12(11): 6250-6255, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32150185

ABSTRACT

Hierarchical porosity and functionalization are recognized as two crucial parameters in mediating the catalytic performance of heterogeneous catalysts, however, they are rarely achieved simultaneously in the development of metal-organic frameworks (MOFs). In this work, a simple and efficient method has been developed to synchronously construct hierarchical porosity and functionalization within a sulfonic acid group functionalized microporous MOF via a palladium-reduction induced strategy, for the first time. The generation mechanism of the mesopore has been explained using two-dimensional 1H DQ-SQ MAS NMR. The content of the mesopore and the active sites within mesoPd@NUS-6 could be finely tuned by simply controlling Pd loading. Particularly, the combination of hierarchical porosity and functionalization, as well as the ultra-stable structure endow the composites with great potential in bulk, for adsorption and heterogeneous catalysis.

18.
Inorg Chem ; 59(3): 1736-1745, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31927961

ABSTRACT

With fossil energy resources increasingly drying up and gradually causing serious environmental impacts, pursuing a tandem and green synthetic route for a complex and high-value-added compound by using low-cost raw materials has attracted considerable attention. In this regard, the selective and efficient conversion of light olefins with CO2 into high-value-added organic cyclic carbonates (OCCs) is of great significance owing to their high atom economy and absence of the isolation of intermediates. To fulfill this expectation, a multifunctional catalytic system with controllable spatial arrangement of varied catalytic sites and stable texture, in particular, within a single catalyst, is generally needed. Here, by using a stepwise electrostatic interaction strategy, imidazolium-based ILs and Au nanoparticles (NPs) were stepwise immobilized into a sulfonic group grafted MOF to construct a multifunctional single catalyst with a highly ordered arrangement of catalytic sites. The Au NPs and imidazolium cation are separately responsible for the selective epoxidation and cycloaddition reaction. The mesoporous cage within the MOF enriches the substrate molecules and provides a confined catalytic room for the tandem catalysis. More importantly, the highly ordered arrangement of the varied active sites and strong electrostatic attraction interaction result in the intimate contact and effective mass transfer between the catalytic sites, which allow for the highly efficient (>74% yield) and stable (repeatedly usage for at least 8 times) catalytic transformation. The stepwise electrostatic interaction strategy herein provides an absolutely new approach in fabricating the controllable multifunctional catalysts, especially for tandem catalysis.

19.
Adv Mater ; 31(52): e1904969, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31736178

ABSTRACT

Hierarchical porosity and functionalization help to fully make use of metal-organic frameworks (MOFs) for their diverse applications. Herein, a simple strategy is reported to construct hierarchically porous MOFs through a competitive coordination method using tetrafluoroborate (M(BF4 )x , where M is metal site) as both functional sites and etching agents. The resulting MOFs have in situ formed defect-mesopores and functional sites without sacrificing their structure stability. The formation mechanism of the defect-mesopores is elucidated by a combination of experimental and first-principles calculation method, indicating the general feasibility of this new approach. Compared with the original microporous counterparts, the new hierarchical MOFs exhibit superior adsorption for the bulky dye molecules and catalytic performance for the CO2 conversion attributed to their specific hierarchical pore structures.

20.
J Colloid Interface Sci ; 557: 207-215, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31521970

ABSTRACT

The development of a suitable catalytic system in the single catalyst has always been the pursuit for synthetic chemists in order to perform the traditional stepwise reactions in one-pot mode. In this work, an ultra-stable bifunctional catalyst of Pd@MIL-101-SO3H was successfully constructed and applied in the one-pot oxidation-acetalization reaction whose products have been widely utilized as fuel additives, perfumes, pharmaceuticals and polymer chemistry. The excellent catalytic performance (>99% yields), on the one hand, can be ascribed to the synergistic effects of Pd NPs with both Lewis and Bronsted acid encapsulated within a sulfonated MIL-101(Cr). On the other hand, the exceptionally high capacity of water adsorption in MIL-101(Cr) could promote the equilibrium movement via interrupting the reversible process. More importantly, Pd@MIL-101-SO3H is recyclable and can be reused for at least 8 times without sacrificing its catalytic activities. As far as we know, this is the first time that a water adsorption enhanced equilibrium movement of reversible reaction by porous catalyst to achieve high yields has been realized in Pd@MIL-101-SO3H, which may provide an absolutely new and efficient strategy especially for designing reaction-oriented catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...