Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
2.
J Virol ; 98(4): e0177323, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38530012

ABSTRACT

Dengue vaccine candidates have been shown to improve vaccine safety and efficacy by altering the residues or accessibility of the fusion loop on the virus envelope protein domain II (DIIFL) in an ex vivo animal study. The current study aimed to comprehensively investigate the impact of DIIFL mutations on the antigenicity, immunogenicity, and protective efficacy of Japanese encephalitis virus (JEV) virus-like particles (VLPs) in mice. We found the DIIFL G106K/L107D (KD) and W101G/G106K/L107D (GKD) mutations altered the binding activity of JEV VLP to cross-reactive monoclonal antibodies but had no effect on their ability to elicit total IgG antibodies in mice. However, JEV VLPs with KD or GKD mutations induced significantly less neutralizing antibodies against JEV. Only 46% and 31% of the KD and GKD VLPs-immunized mice survived compared to 100% of the wild-type (WT) VLP-immunized mice after a lethal JEV challenge. In passive protection experiments, naïve mice that received sera from WT VLP-immunized mice exhibited a significantly higher survival rate of 46.7% compared to those receiving sera from KD VLP- and GKD VLP-immunized mice (6.7% and 0%, respectively). This study demonstrated that JEV DIIFL is crucial for eliciting potently neutralizing antibodies and protective immunity against JEV. IMPORTANCE: Introduction of mutations into the fusion loop is one potential strategy for generating safe dengue and Zika vaccines by reducing the risk of severe dengue following subsequent infections, and for constructing live-attenuated vaccine candidates against newly emerging Japanese encephalitis virus (JEV) or Japanese encephalitis (JE) serocomplex virus. The monoclonal antibody studies indicated the fusion loop of JE serocomplex viruses primarily comprised non-neutralizing epitopes. However, the present study demonstrates that the JEV fusion loop plays a critical role in eliciting protective immunity in mice. Modifications to the fusion loop of JE serocomplex viruses might negatively affect vaccine efficacy compared to dengue and zika serocomplex viruses. Further studies are required to assess the impact of mutant fusion loop encoded by commonly used JEV vaccine strains on vaccine efficacy or safety after subsequent dengue virus infection.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Japanese Encephalitis Vaccines , Animals , Mice , Amino Acids , Antibodies, Neutralizing , Antibodies, Viral , Dengue , Encephalitis Virus, Japanese/physiology , Encephalitis, Japanese/immunology , Encephalitis, Japanese/prevention & control , Epitopes , Japanese Encephalitis Vaccines/genetics , Viral Envelope Proteins/genetics , Zika Virus , Zika Virus Infection
3.
Appl Microbiol Biotechnol ; 108(1): 242, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416210

ABSTRACT

Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 µg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 µg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Flavivirus , Chlorocebus aethiops , Animals , Flavivirus/genetics , Temperature , Encephalitis Virus, Japanese/genetics , Cold Temperature , COS Cells , Mammals
4.
Microbiol Spectr ; 10(3): e0059222, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35532242

ABSTRACT

Flaviviruses are important human pathogens worldwide. Diagnostic testing for these viruses is difficult because many of the pathogens require specialized biocontainment. To address this issue, we generated 39 virus-like particle (VLP)- and nonstructural protein 1 (NS1)-secreting stable cell lines in HEK-293 cells of 13 different flaviviruses, including dengue, yellow fever, Japanese encephalitis, West Nile, St. Louis encephalitis, Zika, Rocio, Ilheus, Usutu, and Powassan viruses. Antigen secretion was stable for at least 10 cell passages, as measured by enzyme-linked immunosorbent assays and immunofluorescence assays. Thirty-five cell lines (90%) had stable antigen expression over 10 passages, with three of these cell lines (7%) increasing in antigen expression and one cell line (3%) decreasing in antigen expression. Antigen secretion in the HEK-293 cell lines was higher than in previously developed COS-1 cell line counterparts. These antigens can replace current antigens derived from live or inactivated virus for safer use in diagnostic testing. IMPORTANCE Serological diagnostic testing for flaviviral infections is hindered by the need for specialized biocontainment for preparation of reagents and assay implementation. The use of previously developed COS-1 cell lines secreting noninfectious recombinant viral antigen is limited due to diminished antigen secretion over time. Here, we describe the generation of 39 flaviviral virus-like particle (VLP)- and nonstructural protein 1 (NS1)-secreting stable cell lines in HEK-293 cells representing 13 medically important flaviviruses. Antigen production was more stable and statistically higher in these newly developed cell lines than in their COS-1 cell line counterparts. The use of these cell lines for production of flaviviral antigens will expand serological diagnostic testing of flaviviruses worldwide.


Subject(s)
Flavivirus Infections , Flavivirus , Zika Virus Infection , Zika Virus , Antibodies, Viral , Antigens, Viral , Flavivirus Infections/diagnosis , HEK293 Cells , Humans , Zika Virus/genetics
5.
Front Microbiol ; 11: 1371, 2020.
Article in English | MEDLINE | ID: mdl-32636827

ABSTRACT

Dengue viral (DENV) infection results in a wide spectrum of clinical manifestations from asymptomatic, mild fever to severe hemorrhage diseases upon infection. Severe dengue is the leading cause of pediatric deaths and/or hospitalizations, which are a major public health burden in dengue-endemic or hyperendemic countries. Like other RNA viruses, DENV continues to evolve. Adaptive mutations are obscured by the major consensus sequence (so-called wild-type sequences) and can only be identified once they become the dominant viruses in the virus population, a process that can take months or years. Traditional surveillance systems still rely on Sanger consensus sequencing. However, with the recent advancement of high-throughput next-generation sequencing (NGS) technologies, the genome-wide investigation of virus population within-host and between-hosts becomes achievable. Thus, viral population sequencing by NGS can increase our understanding of the changing epidemiology and evolution of viral genomics at the molecular level. This review focuses on the studies within the recent decade utilizing NGS in different experimental and epidemiological settings to understand how the adaptive evolution of dengue variants shapes the dengue epidemic and disease severity through its transmission. We propose three types of studies that can be pursued in the future to enhance our surveillance for epidemic prediction and better medical management.

6.
Emerg Microbes Infect ; 9(1): 1722-1732, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32684139

ABSTRACT

The recent outbreaks of Zika virus (ZIKV) in flavivirus-endemic regions highlight the need for sensitive and specific serological tests. Previously we and others reported key fusion loop (FL) residues and/or BC loop (BCL) residues on dengue virus (DENV) envelope protein recognized by flavivirus cross-reactive human monoclonal antibodies and polyclonal sera. To improve ZIKV serodiagnosis, we employed wild type (WT) and FL or FL/BCL mutant virus-like particles (VLP) of ZIKV, DENV1 and West Nile virus (WNV) in enzyme linked immunosorbent assays (ELISA), and tested convalescent-phase serum or plasma samples from reverse-transcription PCR-confirmed cases with different ZIKV, DENV and WNV infections. For IgG ELISA, ZIKV WT-VLP had a sensitivity of 100% and specificity of 52.9%, which was improved to 83.3% by FL/BCL mutant VLP and 92.2% by the ratio of relative optical density of mutant to WT VLP. Similarly, DENV1 and WNV WT-VLP had a sensitivity/specificity of 100%/70.0% and 100%/56.3%, respectively; the specificity was improved to 93.3% and 83.0% by FL mutant VLP. For IgM ELISA, ZIKV, DENV1 and WNV WT-VLP had a specificity of 96.4%, 92.3% and 91.4%, respectively, for primary infection; the specificity was improved to 93.7-99.3% by FL or FL/BCL mutant VLP. An algorithm based on a combination of mutant and WT-VLP IgG ELISA is proposed to discriminate primary ZIKV, DENV and WNV infections as well as secondary DENV and ZIKV infection with previous DENV infections; this could be a powerful tool to better understand the seroprevalence and pathogenesis of ZIKV in regions where multiple flaviviruses co-circulate.


Subject(s)
Antibodies, Viral/blood , Dengue/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , West Nile Fever/diagnosis , Zika Virus Infection/diagnosis , Algorithms , Cross Reactions/immunology , Dengue Virus/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Sensitivity and Specificity , Serologic Tests/methods , West Nile virus/immunology , Zika Virus/immunology
7.
PLoS Pathog ; 15(8): e1007992, 2019 08.
Article in English | MEDLINE | ID: mdl-31381617

ABSTRACT

Genotype I (GI) virus has replaced genotype III (GIII) virus as the dominant Japanese encephalitis virus (JEV) in the epidemic area of Asia. The mechanism underlying the genotype replacement remains unclear. Therefore, we focused our current study on investigating the roles of mosquito vector and amplifying host(s) in JEV genotype replacement by comparing the replication ability of GI and GIII viruses. GI and GIII viruses had similar infection rates and replicated to similar viral titers after blood meal feedings in Culex tritaeniorhynchus. However, GI virus yielded a higher viral titer in amplifying host-derived cells, especially at an elevated temperature, and produced an earlier and higher viremia in experimentally inoculated pigs, ducklings, and young chickens. Subsequently we identified the amplification advantage of viral genetic determinants from GI viruses by utilizing chimeric and recombinant JEVs (rJEVs). Compared to the recombinant GIII virus (rGIII virus), we observed that both the recombinant GI virus and the chimeric rJEVs encoding GI virus-derived NS1-3 genes supported higher replication ability in amplifying hosts. The replication advantage of the chimeric rJEVs was lost after introduction of a single substitution from a GIII viral mutation (NS2B-L99V, NS3-S78A, or NS3-D177E). In addition, the gain-of-function assay further elucidated that rGIII virus encoding GI virus NS2B-V99L/NS3-A78S/E177E substitutions re-gained the enhanced replication ability. Thus, we conclude that the replication advantage of GI virus in pigs and poultry is the result of three critical NS2B/NS3 substitutions. This may lead to more efficient transmission of GI virus than GIII virus in the amplifying host-mosquito cycle.


Subject(s)
Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/virology , Mosquito Vectors , Mutation , Viral Nonstructural Proteins/genetics , Viremia/transmission , Animals , Chickens , Culex , Encephalitis Virus, Japanese/pathogenicity , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/genetics , Female , Genotype , RNA Helicases/genetics , Serine Endopeptidases/genetics , Swine , Virus Replication
8.
Hum Vaccin Immunother ; 15(10): 2328-2336, 2019.
Article in English | MEDLINE | ID: mdl-31314657

ABSTRACT

The unexpectedly low vaccine efficacy of Dengvaxia®, developed by Sanofi Pasteur, and a higher risk of severe diseases after vaccination among dengue-naive children or children younger than 6 years old, have cast skepticism about the safety of dengue vaccination resulting in the suspension of school-based immunization programs in the Philippines. The absence of immune correlates of protection from dengue virus (DENV) infection hampers the development of other potential DENV vaccines. While tetravalent live-attenuated tetravalent vaccines (LATVs), which mimic natural infection by inducing both cellular and humoral immune responses, are still currently favored, developing a vaccine that provides a balanced immunity to all four DENV serotypes remains a challenge. With the recently advanced understanding of virion structure and B cell immune responses from naturally infected DENV patients, two points of view in developing a next-generation dengue vaccine emerged: one is to induce potent, type-specific neutralizing antibodies (NtAbs) recognizing quaternary structure-dependent epitopes by having four components of vaccine strains replicate equivalently; the other is to induce protective and broadly NtAbs against the four serotypes of DENV with a universal vaccine. This article reviews the studies related to these issues and the current knowledge gap that needs to be filled in.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Virion/immunology , Animals , Clinical Trials as Topic , Dengue Virus/physiology , Humans , Serogroup , Vaccination , Vaccines, Attenuated/immunology , Vaccines, Virus-Like Particle , Virion/physiology
9.
Bio Protoc ; 9(12): e3280, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-33654796

ABSTRACT

Non-infectious virus-like particles (VLPs) containing dengue virus (DENV) pre-membrane (prM) and envelope (E) proteins have been demonstrated to be highly immunogenic and can be used as a potential vaccine candidate as well as a tool for serodiagnostic assays. Successful application of VLPs requires abundant, and high-purity production methods. Here, we describe a robust protocol for producing DENV VLPs from transiently-transformed or stable COS-1 cells and further provide an easily adaptable antigen purification method by sucrose gradient centrifugation.

10.
J Clin Microbiol ; 57(3)2019 03.
Article in English | MEDLINE | ID: mdl-30541932

ABSTRACT

Diagnostic testing for Zika virus (ZIKV) or dengue virus (DENV) infection can be accomplished by a nucleic acid detection method; however, a negative result does not exclude infection due to the low virus titer during infection depending on the timing of sample collection. Therefore, a ZIKV- or DENV-specific serological assay is essential for the accurate diagnosis of patients and to mitigate potential severe health outcomes. A retrospective study design with dual approaches of collecting human serum samples for testing was developed. All serum samples were extensively evaluated by using both noninfectious wild-type (wt) virus-like particles (VLPs) and soluble nonstructural protein 1 (NS1) in the standard immunoglobulin M (IgM) antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Both ZIKV-derived wt-VLP- and NS1-MAC-ELISAs were found to have similar sensitivities for detecting anti-premembrane/envelope and NS1 antibodies from ZIKV-infected patient sera, although lower cross-reactivity to DENV2/3-NS1 was observed. Furthermore, group cross-reactive (GR)-antibody-ablated homologous fusion peptide-mutated (FP)-VLPs consistently showed higher positive-to-negative values than homologous wt-VLPs. Therefore, we used DENV-2/3 and ZIKV FP-VLPs to develop a novel, serological algorithm for differentiating ZIKV from DENV infection. Overall, the sensitivity and specificity of the FP-VLP-MAC-ELISA and the NS1-MAC-ELISA were each higher than 80%, with no statistical significance. The accuracy can reach up to 95% with the combination of FP-VLP and NS1 assays. In comparison to current guidelines using neutralization tests to measure ZIKV antibody, this approach can facilitate laboratory screening for ZIKV infection, especially in regions where DENV infection is endemic and capacity for neutralization testing does not exist.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Zika Virus Infection/diagnosis , Zika Virus/immunology , Cross Reactions , Dengue/immunology , Humans , Retrospective Studies , Sensitivity and Specificity , Serologic Tests/methods , Viral Nonstructural Proteins/immunology , Zika Virus Infection/immunology
11.
PLoS Negl Trop Dis ; 12(10): e0006827, 2018 10.
Article in English | MEDLINE | ID: mdl-30286095

ABSTRACT

Purifying selection during dengue viral infection has been suggested as the driving force of viral evolution and the higher complexity of the intra-host quasi-species is thought to offer an adaptive advantage for arboviruses as they cycle between arthropod and vertebrate hosts. However, very few studies have been performed to investigate the viral genetic changes within (intra-host) and between (inter-host) humans in a spatio-temporal scale. Viruses of different serotypes from various countries imported to Taiwan cause annual outbreaks. During 2001-2003, two consecutive outbreaks were caused by dengue virus serotype 2 (DENV-2) and resulted in a larger-scale epidemic with more severe dengue cases in the following year. Phylogenetic analyses showed that the viruses from both events were similar and related to the 2001 DENV-2 isolate from the Philippines. We comprehensively analyzed viral sequences from representative dengue patients and identified three consensus genetic variants, group Ia, Ib and II, with different spatio-temporal population dynamics. The phylodynamic analysis suggested group Ib variants, characterized by lower genetic diversity, transmission rate, and intra-host variant numbers, might play the role of maintenance variants. The residential locations among the patients infected by group Ib variants were in the outer rim of case clusters throughout the 2001-2003 period whereas group Ia and II variants were located in the centers of case clusters, suggesting that group Ib viruses might serve as "sheltered overwintering" variants in an undefined ecological niche. Further deep sequencing of the viral envelope (E) gene directly from individual patient serum samples confirmed the emergence of variants belonging to three quasi-species (group Ia, Ib, and II) and the ancestral role of the viral variants in the latter phase of the 2001 outbreak contributed to the later, larger-scale epidemic beginning in 2002. These findings enhanced our understanding of increasing epidemic severity over time in the same epidemic area. It also highlights the importance of combining phylodynamic and deep sequencing analysis as surveillance tools for detecting dynamic changes in viral variants, particularly searching for and monitoring any specific viral subpopulation. Such subpopulations might have selection advantages in both fitness and transmissibility leading to increased epidemic severity.


Subject(s)
Dengue Virus/classification , Dengue Virus/genetics , Dengue/epidemiology , Dengue/virology , Epidemics , Genetic Variation , Adolescent , Adult , Animals , Child , Child, Preschool , Dengue Virus/isolation & purification , Evolution, Molecular , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Molecular Epidemiology , Phylogeny , Spatio-Temporal Analysis , Taiwan/epidemiology
12.
Elife ; 72018 10 18.
Article in English | MEDLINE | ID: mdl-30334522

ABSTRACT

Dengue fever is caused by four different serotypes of dengue virus (DENV) which is the leading cause of worldwide arboviral diseases in humans. Virus-like particles (VLPs) containing flavivirus prM/E proteins have been demonstrated to be a potential vaccine candidate; however, the structure of dengue VLP is poorly understood. Herein VLP derived from DENV serotype-2 were engineered becoming highly matured (mD2VLP) and showed variable size distribution with diameter of ~31 nm forming the major population under cryo-electron microscopy examination. Furthermore, mD2VLP particles of 31 nm diameter possess a T = 1 icosahedral symmetry with a groove located within the E-protein dimers near the 2-fold vertices that exposed highly overlapping, cryptic neutralizing epitopes. Mice vaccinated with mD2VLP generated higher cross-reactive (CR) neutralization antibodies (NtAbs) and were fully protected against all 4 serotypes of DENV. Our results highlight the potential of 'epitope-resurfaced' mature-form D2VLPs in inducing quaternary structure-recognizing broad CR NtAbs to guide future dengue vaccine design.


Subject(s)
Antibodies, Neutralizing/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Epitopes/immunology , Vaccines, Virus-Like Particle/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Dengue Virus/classification , Dengue Virus/ultrastructure , Epitopes/chemistry , Female , Immunization , Mice, Inbred BALB C , Serotyping , Solvents , Survival Analysis , Vaccines, Virus-Like Particle/ultrastructure , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Virion/metabolism , Virion/ultrastructure
13.
Sci Rep ; 8(1): 7481, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29748549

ABSTRACT

Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Cross Protection , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/therapy , Japanese Encephalitis Vaccines/therapeutic use , Vaccination/methods , Animals , Antibodies, Neutralizing/genetics , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetinae , Cricetulus , Cross Protection/genetics , Cross Protection/immunology , Disease Models, Animal , Encephalitis Virus, Japanese/classification , Encephalitis, Japanese/genetics , Encephalitis, Japanese/immunology , Female , Genotype , Japanese Encephalitis Vaccines/genetics , Japanese Encephalitis Vaccines/immunology , Mice , Mice, Inbred BALB C , RNA, Viral/genetics , Swine , Vaccination/veterinary , Vero Cells , Virion/genetics , Virion/immunology
14.
Am J Trop Med Hyg ; 97(5): 1410-1417, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28820694

ABSTRACT

Although first isolated almost 70 years ago, Zika virus (ZIKV; Flavivirus, Flaviviridae) has only recently been associated with significant outbreaks of disease in humans. Several severe ZIKV disease manifestations have also been recently documented, including fetal malformations, such as microcephaly, and Guillain-Barré syndrome in adults. Although principally transmitted by mosquitoes, sexual transmission of ZIKV has been documented. Recent publications of several interferon receptor knockout mouse models have demonstrated ZIKV-induced disease. Herein, outbred immunocompetent CD-1/ICR adult mice were assessed for susceptibility to disease by intracranial (i.c.) and intraperitoneal (i.p.) inoculation with the Ugandan prototype strain (MR766; African genotype), a low-passage Senegalese strain (DakAr41524; African genotype) and a recent ZIKV strain isolated from a traveler infected in Puerto Rico (PRVABC59; Asian genotype). Morbidity was not observed in mice inoculated by the i.p. route with either MR766 or PRVABC59 for doses up to 6 log10 PFU. In contrast, CD-1/ICR mice inoculated i.c. with the MR766 ZIKV strain exhibited an 80-100% mortality rate that was age independent. The DakAr41524 strain delivered by the i.c route caused 30% mortality, and the Puerto Rican ZIKV strain failed to elicit mortality but did induce a serum neutralizing immune response in 60% of mice. These data provide a potential animal model for assessing neurovirulence determinants of different ZIKV strains as well as a potential immunocompetent challenge model for assessing protective efficacy of vaccine candidates.


Subject(s)
Neurons/virology , Zika Virus/pathogenicity , Animals , Cell Line, Tumor , Chlorocebus aethiops , Disease Models, Animal , Female , Genotype , Humans , Mice , Mice, Inbred ICR , Neurons/cytology , Vero Cells , Virulence , Virus Replication , Zika Virus/classification , Zika Virus/physiology , Zika Virus Infection/diagnosis
15.
PLoS Negl Trop Dis ; 11(8): e0005869, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28854206

ABSTRACT

In mid-2015, Salvador, Brazil, reported an outbreak of Guillain-Barré syndrome (GBS), coinciding with the introduction and spread of Zika virus (ZIKV). We found that GBS incidence during April-July 2015 among those ≥12 years of age was 5.6 cases/100,000 population/year and increased markedly with increasing age to 14.7 among those ≥60 years of age. We conducted interviews with 41 case-patients and 85 neighborhood controls and found no differences in demographics or exposures prior to GBS-symptom onset. A higher proportion of case-patients (83%) compared to controls (21%) reported an antecedent illness (OR 18.1, CI 6.9-47.5), most commonly characterized by rash, headache, fever, and myalgias, within a median of 8 days prior to GBS onset. Our investigation confirmed an outbreak of GBS, particularly in older adults, that was strongly associated with Zika-like illness and geo-temporally associated with ZIKV transmission, suggesting that ZIKV may result in severe neurologic complications.


Subject(s)
Disease Outbreaks , Guillain-Barre Syndrome/epidemiology , Zika Virus Infection/complications , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Brazil/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Young Adult
16.
Cell Rep ; 18(7): 1751-1760, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28199846

ABSTRACT

Circulation of Zika virus (ZIKV) was first identified in the Western hemisphere in late 2014. Primarily transmitted through mosquito bite, ZIKV can also be transmitted through sex and from mother to fetus, and maternal ZIKV infection has been associated with fetal malformations. We assessed immunodeficient AG129 mice for their capacity to shed ZIKV in semen and to infect female mice via sexual transmission. Infectious virus was detected in semen between 7 and 21 days post-inoculation, and ZIKV RNA was detected in semen through 58 days post-inoculation. During mating, 73% of infected males transmitted ZIKV to uninfected females, and 50% of females became infected, with evidence of fetal infection in resulting pregnancies. Semen from vasectomized mice contained significantly lower levels of infectious virus, though sexual transmission still occurred. This model provides a platform for studying the kinetics of ZIKV sexual transmission and prolonged RNA shedding also observed in human semen.


Subject(s)
Mice, SCID/virology , RNA, Viral/genetics , Sexually Transmitted Diseases, Viral/virology , Zika Virus Infection/virology , Zika Virus/genetics , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , Semen/virology , Viral Load
17.
J Microbiol Immunol Infect ; 50(2): 167-174, 2017 Apr.
Article in English | MEDLINE | ID: mdl-26260863

ABSTRACT

BACKGROUND/PURPOSES: Early diagnosis of dengue virus (DENV) infection to monitor the potential progression to hemorrhagic fever can influence the timely management of dengue-associated severe illness. Nonstructural protein 1 (NS1) antigen detection in acute serum specimens has been widely accepted as an early diagnostic assay for dengue infection; however, lower sensitivity of the NS1 antigen-capture enzyme-linked immunosorbent assay (Ag-ELISA) in secondary dengue viral infection has been reported. METHODS: In this study, we developed two forms of Ag-ELISA capable of detecting E-Ag containing virion and virus-like particles, and secreted NS1 (sNS1) antigens, respectively. The temporal kinetics of viral RNA, sNS1, and E-Ag were evaluated based on the in vitro infection experiment. Meanwhile, a panel of 62 DENV-2 infected patients' sera was tested. RESULTS: The sensitivity was 3.042 ng/mL and 3.840 ng/mL for sNS1 and E, respectively. The temporal kinetics of the appearance of viral RNA, E, NS1, and infectious virus in virus-infected tissue culture media suggested that viral RNAs and NS1 antigens could be detected earlier than E-Ag and infectious virus. Furthermore, a panel of 62 sera from patients infected by DENV Serotype 2 was tested. Treating clinical specimens with the dissociation buffer increased the detectable level of E from 13% to 92% and NS1 antigens from 40% to 85%. CONCLUSION: Inclusion of a low-pH glycine buffer treatment step in the commercially available Ag-ELISA is crucial for clinical diagnosis and E-containing viral particles could be a valuable target for acute DENV diagnosis, similar to NS1 detection.


Subject(s)
Antigens, Viral/blood , Antigens, Viral/isolation & purification , Dengue Virus/immunology , Dengue/blood , Dengue/immunology , Enzyme-Linked Immunosorbent Assay/methods , Glycine/chemistry , Aedes/virology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigen-Antibody Complex/chemistry , Antigens, Viral/immunology , Chlorocebus aethiops , Dengue/virology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Vero Cells , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/isolation & purification , Virion/immunology
18.
Bull World Health Organ ; 94(11): 817-825A, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27821884

ABSTRACT

OBJECTIVE: To differentiate exposure to the newly introduced chikungunya virus from exposure to endemic dengue virus and other pathogens in Haiti. METHODS: We used a multiplex bead assay to detect immunoglobulin G (IgG) responses to a recombinant chikungunya virus antigen, two dengue virus-like particles and three recombinant Plasmodium falciparum antigens. Most (217) of the blood samples investigated were collected longitudinally, from each of 61 children, between 2011 and 2014 but another 127 were collected from a cross-sectional sample of children in 2014. FINDINGS: Of the samples from the longitudinal cohort, none of the 153 collected between 2011 and 2013 but 78.7% (48/61) of those collected in 2014 were positive for IgG responses to the chikungunya virus antigen. In the cross-sectional sample, such responses were detected in 96 (75.6%) of the children and occurred at similar prevalence across all age groups. In the same sample, responses to malarial antigen were only detected in eight children (6.3%) but the prevalence of IgG responses to dengue virus antigens was 60.6% (77/127) overall and increased steadily with age. Spatial analysis indicated that the prevalence of IgG responses to the chikungunya virus and one of the dengue virus-like particles decreased as the sampling site moved away from the city of Léogâne and towards the ocean. CONCLUSION: Serological evidence indicates that there had been a rapid and intense dissemination of chikungunya virus in Haiti. The multiplex bead assay appears to be an appropriate serological platform to monitor the seroprevalence of multiple pathogens simultaneously.


Subject(s)
Chikungunya Fever , Dengue , Environmental Exposure , Malaria , Adolescent , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Chikungunya virus/isolation & purification , Child , Child, Preschool , Cross-Sectional Studies , Dengue/diagnosis , Dengue/epidemiology , Environmental Exposure/statistics & numerical data , Female , Haiti/epidemiology , Humans , Longitudinal Studies , Malaria/diagnosis , Malaria/epidemiology , Male , Plasmodium falciparum/isolation & purification
20.
J Clin Microbiol ; 54(2): 412-22, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26659204

ABSTRACT

The front-line assay for the presumptive serodiagnosis of acute Japanese encephalitis virus (JEV) and West Nile virus (WNV) infections is the premembrane/envelope (prM/E)-specific IgM antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Due to antibody cross-reactivity, MAC-ELISA-positive samples may be confirmed with a time-consuming plaque reduction neutralization test (PRNT). In the present study, we applied a previously developed anti-nonstructural protein 1 (NS1)-specific MAC-ELISA (NS1-MAC-ELISA) on archived acute-phase serum specimens from patients with confirmed JEV and WNV infections and compared the results with prM/E containing virus-like particle-specific MAC-ELISA (VLP-MAC-ELISA). Paired-receiver operating characteristic (ROC) curve analyses revealed no statistical differences in the overall assay performances of the VLP- and NS1-MAC-ELISAs. The two methods had high sensitivities of 100% but slightly lower specificities that ranged between 80% and 100%. When the NS1-MAC-ELISA was used to confirm positive results in the VLP-MAC-ELISA, the specificity of serodiagnosis, especially for JEV infection, was increased to 90% when applied in areas where JEV cocirculates with WNV, or to 100% when applied in areas that were endemic for JEV. The results also showed that using multiple antigens could resolve the cross-reactivity in the assays. Significantly higher positive-to-negative (P/N) values were consistently obtained with the homologous antigens than those with the heterologous antigens. JEV or WNV was reliably identified as the currently infecting flavivirus by a higher ratio of JEV-to-WNV P/N values or vice versa. In summary of the above-described results, the diagnostic algorithm combining the use of multiantigen VLP- and NS1-MAC-ELISAs was developed and can be practically applied to obtain a more specific and reliable result for the serodiagnosis of JEV and WNV infections without the need for PRNT. The developed algorithm should provide great utility in diagnostic and surveillance activities in which test accuracy is of utmost importance for effective disease intervention.


Subject(s)
Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/diagnosis , Enzyme-Linked Immunosorbent Assay , West Nile Fever/diagnosis , West Nile virus/immunology , Algorithms , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Encephalitis, Japanese/immunology , Encephalitis, Japanese/virology , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immune Sera , Immunoglobulin M/blood , Immunoglobulin M/immunology , ROC Curve , Reproducibility of Results , Serologic Tests/methods , Serologic Tests/standards , West Nile Fever/immunology , West Nile Fever/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...