Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37959958

ABSTRACT

This study aimed to improve the injection molding quality of LSR material lenses by optimizing the process parameters. To achieve this goal, we employed the population-based optimization algorithm NSGA-III, which can simultaneously optimize multiple objective functions and identify an equilibrium point among them, thereby reducing the time required to find the optimal process parameters. We utilized analysis software to simulate the injection molding process of LSR material lenses, with a specific focus on examining the relationship between tie bar elongation and the optimized process parameters. During the study, we intentionally varied key process parameters, including the melt temperature, holding pressure, and holding time, to analyze their impact on the residual stress of the final product. In order to investigate the intricate relationship between the tie bar yield, injection molding process parameters, and lens residual stress, we installed strain sensors on the tie bar to continuously monitor changes in clamping force throughout the injection molding process. The experimental results showed that both the tie bar force and mold cavity pressure exerted significant influence on residual stresses. By applying the NSGA-III algorithm for optimization, we successfully determined the optimal process parameters, which included a melt temperature of 34.92 °C, a holding pressure of 33.97 MPa, and a holding time of 9.96 s. In comparison to the initially recommended process parameters during the design phase, the optimized parameters led to reductions of 12.98% in clamping force and 47.14% in residual stress. Furthermore, the average transmittance of the actual product remained within the range of 95-98%. In summary, this approach not only enables the prediction of the lens's residual stress trends based on the tie bar elongation, but also leads to a substantial enhancement of lens quality, characterized by reduced residual stress and improved transmittance through the optimization of process parameters. This methodology can serve as a valuable guide for optimizing real-world injection molding processes.

2.
Polymers (Basel) ; 15(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37631460

ABSTRACT

The Fresnel lens is an optical system consisting of a series of concentric diamond grooves. One surface of the lens is smooth, while the other is engraved with concentric circles of increasing size. Optical interference, diffraction, and sensitivity to the angle of incidence are used to design the microstructure on the lens surface. The imaging of the optical surface depends on its curvature. By reducing the thickness of the lens, light can still be focused at the same focal point as with a thicker lens. Previously, lenses, including Fresnel lenses, were made of glass due to material limitations. However, the traditional grinding and polishing methods for making Fresnel lenses were not only time-consuming, but also labour-intensive. As a result, costs were high. Later, a thermal pressing process using metal moulds was invented. However, the high surface tension of glass caused some detailed parts to be deformed during the pressing process, resulting in unsatisfactory Fresnel lens performance. In addition, the complex manufacturing process and unstable processing accuracy hindered mass production. This resulted in high prices and limited applications for Fresnel lenses. These factors prevented the widespread use of early Fresnel lenses. In contrast, polymer materials offer advantages, such as low density, light weight, high strength-to-weight ratios, and corrosion resistance. They are also cost effective and available in a wide range of grades. Polymer materials have gradually replaced optical glass and other materials in the manufacture of micro-optical lenses and other miniaturised devices. Therefore, this study focuses on investigating the manufacturing parameters of Fresnel lenses in the injection moulding process. We compare the quality of products obtained by two-stage injection moulding, injection compression moulding, and IMD (in-mould decoration) techniques. The results show that the optimal method is IMD, which reduces the nodal displacement on the Fresnel lens surface and improves the transmission performance. To achieve this, we first establish a Kriging model to correlate the process parameters with optimisation objectives, mapping the design parameters and optimisation objectives. Based on the Kriging model, we integrate the NSGA-II algorithm with the predictive model to obtain the Pareto optimal solutions. By analysing the Pareto frontier, we identify the best process parameters. Finally, it is determined that the average nodal displacement on the Fresnel surface is 0.393 mm, at a holding pressure of 320.35 MPa and a melt temperature of 251.40 °C. Combined with IMD technology, product testing shows a transmittance of 95.43% and an optimisation rate of 59.64%.

3.
Polymers (Basel) ; 15(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36771801

ABSTRACT

Injection molding process parameters have a great impact on plastic production quality, manufacturing cost, and molding efficiency. This study proposes to apply the method of Latin hypercube sampling, and to combine the response surface model and "Constraint Generation Inverse Design Network (CGIDN)" to achieve multi-objective optimization of the injection process, shorten the time to find the optimal process parameters, and improve the production efficiency of plastic parts. Taking the LSR lens array of automotive LED lights as the research object, the residual stress and volume shrinkage were taken as the optimization objectives, and the filling time, melt temperature, maturation time, and maturation pressure were taken as the influencing factors to obtain the optimization target values, and the response surface models between the volume shrinkage rate and the influencing factors were established. Based on the "Constraint-Generated Inverse Design Network", the optimization was independently sought within the set parameters to obtain the optimal combination of process parameters to meet the injection molding quality of plastic parts. The results showed that the optimal residual stress value and volume shrinkage rate were 11.96 MPa and 4.88%, respectively, in the data set of 20 Latin test samples obtained based on Latin hypercube sampling, and the optimal residual stress value and volume shrinkage rate were 8.47 MPa and 2.83%, respectively, after optimization by the CGIDN method. The optimal process parameters obtained by CGIDN optimization were a melt temperature of 30 °C, filling time of 2.5 s, maturation pressure of 40 MPa, and maturation time of 15 s. The optimization results were obvious and showed the feasibility of the data-driven injection molding process optimization method based on the combination of Latin hypercube sampling and CGIDN.

4.
Polymers (Basel) ; 14(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36365533

ABSTRACT

In this paper, a node detection method is proposed for the detection of battle damage to armor. This experiment uses the special nature of the film to virtualize the surface of the armor IMD film coverage. The die index is a large area and is easy to damage, but with the use of a unique IMD film stamping die, the possibility of damage decreases, which provides a damage prediction function for the armor. In addition, for the damaged armor, the same method can be used to detect because the damaged part more easily causes the surface film to rupture after being impacted, so it is possible to optimize the design of the armor and the molding through the die index. The die index can also detect the degree of damage to the damaged part of the damaged armor. Therefore, the IMD die index is introduced to quantify the data, and the degree of damage is judged by the IMD die index. The novelty of this work is that each node can efficiently detect the vulnerable damage position of the armor using the die index and then pass through the COMSOL. The Johnson-Cook stress model simulates the battle loss, obtains the stress deformation that occurs after the battle loss, and verifies the experiment by comparing the results obtained. Finally, the repair method is used to repair all the predicted battle damage parts based on additive manufacturing to ensure that they can be used again after repair.

5.
Polymers (Basel) ; 14(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35956558

ABSTRACT

This paper analyzes the structure of the key parts of the car belt guide, and the average stress of the vulnerable parts is simulated by analysis software. The theoretical stress of the section is calculated. The theoretical stress concentration factor (Kt) is given. The relation between the gap radius and the notch coefficient (Kf) was studied according to a previous Kf calculation formula. The tensile tests of real products are used as reference data. The results showed that Kf and Kt are linear in most cases, but there are also cases of non-compliance. The relationship between the fatigue notch coefficient Kf and the theoretical stress concentration coefficient Kt was closely related to the service life and fatigue strength of the product. In addition, we found that the size and direction of warpage improved significantly with the increase of fillet size, which was not consistent with the effect of adding glass fiber material. The rounded corners of ordinary PP materials usually displayed forward warping, but the addition of glass fiber into PP materials made the degree of warping smaller, or even led to reverse warping. The size of rounded corners is an important optimization parameter. The relationship between Kf and Kt was studied from the perspectives of virtual measurement (VM) and recognizable performance evaluation (RPM). According to abnormal filling pressure, these relationships were compared with filling data to generate a fracture initiation control model. Based on a large amount of normal process data and quality inspection data, the historical data (causes) and quality inspection data (results) were combined.

6.
Polymers (Basel) ; 14(14)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35890672

ABSTRACT

This paper uses Pareto-optimized frames and injection molding process parameters to optimize the quality of UAV housing parts with multi-objective optimization. Process parameters, such as melt temperature, filling time, pressure, and pressure time, were studied as model variables. The quality of a plastic part is determined by two defect parameters, warpage value and mold index, which require minimal defect parameters. This paper proposes a three-stage optimization system. In the first stage, the main node position of the electronic chip in the module is collected by the unified sampling method, and the chip calculation index of these node positions is analyzed by the mold flow analysis software. In the second stage, the kriging function predicts the mathematical relationship between the mold index and warpage value and the process parameters, such as melt temperature, filling time, packing pressure, and packing time. In the third stage, using LHD sampling and non-dominant rank genetic algorithm II, a convergence curve of warp value is found near the Pareto optimal frontier. In the fourth stage, the fitting degree of Pareto optimal leading edge curve points was verified by analytical experiments. According to experimental verification, it can be seen that the injection molding factors are pressure and pressure time, because the injection molding time and pressure time are completely positively correlated with the mold indicators, the correlation is the strongest, the mold temperature and glue temperature are not the main influencing factors, and the mold temperature shows a certain degree of negative correlation. In this experiment, the die index is mainly improved by injection time and pressure, optimal injection parameter factor combination and minimum injection index, the optimization rate of the die index is up to 96.2% through genetic algorithm optimization nodes and experimental verification, the average optimization rate of the four main optimization nodes is 91.2%, and the error rate with the actual situation is only 8.48%, which is in line with the needs of actual production, and the improvement of the UAV IME membrane is realized.

7.
Polymers (Basel) ; 14(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35808629

ABSTRACT

This paper uses a multi-objective optimization method to optimize the injection-molding defects of automotive pedals. Compared with the traditional automotive pedal material, aluminum alloy, the polymer pedal containing glass fibers not only reduces the aluminum pedal by at least half, but also improves the strength and hardness of the fibers by adjusting the orientation of the fibers in all directions. Injection factors include: filling time, filling pressure, melt temperature, cooling time, injection time, etc. For the optimization process influencing factors, herein, we focus on warpage analyzed via flow simulation, and setting warpage parameters and cycle time as discussed by setting different cooling distributions, pressures and temperature schemes. The multi-objective optimization design was mainly used to describe the relationship between cycle time and warpage, and the Pareto boundary was used for cycle time and warpage to identify the deviation function and radial-basis-function network. We worked with a small DOE for building the surface to run SAO programming-which improved the accuracy of the response surface by adding sampling points-terminating the time when the warpage value met the solution requirements, to find out the global optimal solution of the warpage value under different cooling times. Finally, the results highlighted four influencing parameters that match the experimental image of the actual production.

8.
Polymers (Basel) ; 14(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35215590

ABSTRACT

In the process of injection molding, a certain percentage of recycled material is usually used in order to save costs. The material properties of recycled materials can change significantly compared with raw materials, and the quality of their molded products is more difficult to control. Therefore, it is crucial to propose a method that can effectively maintain the yield of the recycled material products. In addition, the variation of clamping force during the injection molding process can be determined by measuring the tie-bar elongation of the injection molding machine. Therefore, this study proposes a real-time product quality monitoring system based on the variation of clamping force during the injection molding process for the injection molding of recycled materials for plastic bottle caps. The variation of clamping force reflects the variation of cavity pressure during the injection molding process and further maps the variation of injection parameters during the injection molding process. Therefore, this study evaluates the reliability of the proposed method for three different injection parameters (residual position, metering end point and metering time). Experiments have shown that there is a strong correlation between the quality (geometric properties) and weight of the product under different molding parameters. Moreover, the three main injection parameters have a strong influence on the weight and quality of the plastic caps. The variation of the clamping force is also highly correlated with the weight of the plastic bottle cap. This demonstrates the feasibility of applying the variation of clamping force to monitor the quality of injection molded products. Furthermore, by integrating the clamping force variation index with the calibration model of the corresponding injection parameters, it is possible to control the weight of the plastic cap within the acceptable range of the product in successive production runs.

9.
Polymers (Basel) ; 15(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36616436

ABSTRACT

The residual stress phenomenon in the injection process of an optical lens affects the quality of optical components, and the refractive error caused by geometric errors is the most serious, followed by the degradation of the accuracy and function of optical components. It is very important to ensure that the lens geometry remains intact and the refractive index is low. Therefore, a parameter design method for an optical liquid silicon injection molding was proposed in this study. Wavelet analysis was applied to the noise reduction and feature extraction of the cavity pressure/pressure retaining curve of the injection molding machine, and multiple identifiable performance evaluation methods were used to identify and optimize the parameters of the molding process. Taking an automotive LED lens as an example, Moldex3D simulation software was used to simulate the molding of an LED lens made of LSR material, and two key injection molding factors, melt temperature and V/P switching point, were analyzed and optimized. In this paper, the transmittance and volume shrinkage of LED lenses are taken as quality indexes, and parameters are optimized by setting different V/P switching points and melt temperature schemes. The experimental results show that the residual stress is negatively correlated with transmittance, and the higher the residual stress, the lower the transmittance. Under the optimum process parameters generated by this method, the residual stress of plastic parts is significantly optimized, and the optimization rate is above 15%. In addition, when the V/P switching point is 98 and the melt temperature is 30 °C, the product quality is the best, the volume shrinkage rate is the smallest, and the size is 2.895%, which also means that the carbon emissions are the lowest.

10.
Materials (Basel) ; 13(5)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150888

ABSTRACT

The purpose of this study is to clarify the influence of changes in glass fiber properties on warpage prediction, and to demonstrate the importance of accurate material property data in the numerical simulation of injection molding. In addition, this study proposes an optimization method based on the reverse warping agent model, in which the thermal conductivity of the plastic material is reduced, and the solidified layer on the surface of the mold is reduced and transferred from the molding material to the mold wall. This means that by the end of the cooling phase, the shrinkage of the molten zone within the component will continue, resulting in warpage. Based on the optimal process parameters, the sensitivity of the warpage prediction to the relationship between the two most important material properties, the glass fiber and holding pressure time, was analyzed. The material property model constants used for numerical simulations can sometimes vary significantly due to inherent experimental measurement errors, the resolution of the test device, or the manner in which the curve fit is performed to determine the model constants. This model has been developed to intelligently determine the preferred processing parameters and to gradually correct the details of the molding conditions. Thus, the cavity is separated in the critical warpage region, and a new cavity geometry with a reverse warped profile is placed into the mold base slot. The results show that the hypothetical and reasonable variation of the glass fiber model constant and the holding pressure time relationship may significantly affect the magnitude of the warpage prediction of glass fiber products. The greatest differences were found as a result of the warping orientation of the glass fiber material.

SELECTION OF CITATIONS
SEARCH DETAIL
...