Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 6139-6142, 2020 07.
Article in English | MEDLINE | ID: mdl-33019372

ABSTRACT

Recently the world population with diabetes has increased significantly, and the market demand for noninvasive blood glucose monitoring has increased accordingly. Our previous study demonstrated the capability to detect glucose through the direct observation of glucose Raman fingerprint peaks from in vivo skin but using a benchtop device. From the perspective of commercialization, miniaturized devices are expected to make more impact on the market than bulky benchtop devices. In this study, as an effort for commercialization of noninvasive glucose sensing technology, we investigate the relationship between Raman spectrometer specification, especially collection efficiency, and glucose prediction performance. Raman spectra were synthesized at given spectrometer collection efficiencies in computer simulation, in which spectra are designed to contain glucose signal at specific concentrations. Then, we estimated glucose concentrations back using regression analysis and evaluated prediction performances. Finally, the relationship was analyzed between the collection efficiencies and glucose prediction performances. In order to mimic actual conditions with skin tissue, Monte-Carlo simulations were conducted to count the number of Raman photons escaping from the skin surface in a multi-layered skin model. As the collection efficiency decreased from 3.2 % to 0.2 %, the correlation coefficient between the actual and predicted glucose concentrations dropped from 0.91 to 0.35. The glucose Raman peaks at 1125 cm-1 was identified as the most important wavelength for glucose sensing. This study may help identify optimal Raman spectrometer specifications for transcutaneous blood glucose sensing in miniaturized devices and commercialize noninvasive blood glucose sensors in Raman spectroscopy.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Computer Simulation , Glucose , Miniaturization
2.
Sci Adv ; 6(4): eaay5206, 2020 01.
Article in English | MEDLINE | ID: mdl-32042901

ABSTRACT

Noninvasive blood glucose monitoring has been a long-standing dream in diabetes management. The use of Raman spectroscopy, with its molecular specificity, has been investigated in this regard over the past decade. Previous studies reported on glucose sensing based on indirect evidence such as statistical correlation to the reference glucose concentration. However, these claims fail to demonstrate glucose Raman peaks, which has raised questions regarding the effectiveness of Raman spectroscopy for glucose sensing. Here, we demonstrate the first direct observation of glucose Raman peaks from in vivo skin. The signal intensities varied proportional to the reference glucose concentrations in three live swine glucose clamping experiments. Tracking spectral intensity based on linearity enabled accurate prospective prediction in within-subject and intersubject models. Our direct demonstration of glucose signal may quiet the long debate about whether glucose Raman spectra can be measured in vivo in transcutaneous glucose sensing.


Subject(s)
Blood Glucose/metabolism , Skin/metabolism , Spectrum Analysis, Raman , Animals , Female , Monitoring, Physiologic , Skin/blood supply , Swine
3.
Nanoscale ; 8(12): 6571-6, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26935411

ABSTRACT

We report the room-temperature lasing action from two-dimensional photonic crystal (PC) structures composed of a passive Si3N4 backbone with an over-coat of CdSe/CdS/ZnS colloidal quantum dots (CQDs) for optical gain. When optically excited, devices lased in dual PC band-edge modes, with the modal dominance governed by the thickness of the CQD over-layer. The demonstrated laser platform should have an impact on future photonic integrated circuits as the on-chip coupling between active and passive components is readily achievable.

4.
Opt Express ; 17(25): 22535-42, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-20052178

ABSTRACT

This study proposes a one-dimensional sub-wavelength grating structure on GaN surface which behaves as a reflector for transverse-electric polarized light in the blue wavelength range. The rigorous coupled-wave analysis method was used to analyze the effects of various structural parameters on the reflectance spectra of the grating. Based on the optimal design, a GaN surface grating reflector (SGR) was fabricated using holographic lithography and dry etching processes. It showed reflectance that exceeded 90% over a 60-nm bandwidth. The obtained experimental results were in good agreement with simulated ones. The SGR has an advantage of structural simplicity, which should greatly facilitate the fabrication and integration of high reflectors on GaN-based short-wavelength photonic devices.


Subject(s)
Gallium/chemistry , Lenses , Refractometry/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...