Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Chromatogr A ; 1730: 465099, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38901298

ABSTRACT

A miniaturized microchip-based absorbance detector was developed for portable high-performance liquid chromatography (HPLC) to test glycated hemoglobin (HbA1c). The microchip integrating a Z-shaped cell, two collimating micro-lenses and two ink-filled optical slits is small in size (30 mm × 15 mm × 7 mm). The Z-shaped cell has a cross-sectional size of 500 µm × 500 µm and a physical optical path length of 2 mm. Two collimating micro-lenses were inserted in empty grooves on both sides of the cell, one micro-lens for collimating the initial light and the other for focusing the transmitted light. Optical slits on each end of the cell were used to block the stray light. Therefore, this detector indicated a low stray light level (0.011 %) and noise level (2.5 × 10-4 AU). This detector was applied for the commercial HPLC system to detect HbA1c level, and showed a low limit of detection (0.5 µg/mL) and excellent repeatability (≤ 2.03 %). The sensitivity was enhanced by 3.4 times when the optical path length was increased from 0.5 mm to 2 mm and the stray light was blocked by optical slits. The miniaturized microchip-based absorbance detector developed shows a great potential for application in portable and compact HPLC.

2.
Microsyst Nanoeng ; 10: 37, 2024.
Article in English | MEDLINE | ID: mdl-38495470

ABSTRACT

A surface acoustic wave (SAW) gyroscope measures the rate of rotational angular velocity by exploiting a phenomenon known as the SAW gyroscope effect. Such a gyroscope is a great candidate for application in harsh environments because of the simplification of the suspension vibration mechanism necessary for traditional microelectromechanical system (MEMS) gyroscopes. Here, for the first time, we propose a novel toroidal standing-wave-mode SAW gyroscope using focused interdigitated transducers (FIDTs). Unlike traditional SAW gyroscopes that use linear IDTs to generate surface acoustic waves, which cause beam deflection and result in energy dissipation, this study uses FIDTs to concentrate the SAW energy based on structural features, resulting in better focusing performance and increased SAW amplitude. The experimental results reveal that the sensitivity of the structure is 1.51 µV/(°/s), and the bias instability is 0.77°/s, which are improved by an order of magnitude compared to those of a traditional SAW gyroscope. Thus, the FIDT component can enhance the performance of the SAW gyroscope, demonstrating its superiority for angular velocity measurements. This work provides new insights into improving the sensitivity and performance of SAW gyroscopes.

3.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38398955

ABSTRACT

This paper characterizes the sensitivity of a time domain MEMS accelerometer. The sensitivity is defined by the increment in the measured time interval per gravitational acceleration. Two sensitivities exist, and they can be enhanced by decreasing the amplitude and frequency. The sensitivity with minor nonlinearity is chosen to evaluate the time domain sensor. The experimental results of the developed accelerometer demonstrate that the sensitivities span from -68.91 µs/g to -124.96 µs/g and the 1σ noises span from 8.59 mg to 6.2 mg (amplitude of 626 nm: -68.91 µs/g and 10.21 mg; amplitude of 455 nm: -94.51 µs/g and 7.76 mg; amplitude of 342 nm: -124.96 µs/g and 6.23 mg), which indicates the bigger the amplitude, the smaller the sensitivity and the bigger the 1σ noise. The adjustable sensitivity provides a theoretical foundation for range self-adaption, and all the results can be extended to other time domain inertial sensors, e.g., a gyroscope or an inclinometer.

4.
Anal Chim Acta ; 1288: 342186, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220313

ABSTRACT

BACKGROUND: The determination of glycosylated hemoglobin (HbA1c) is crucial for diabetes diagnosis and can provide more substantial results than the simple measurement of glycemia. While there is a lack of simple methods for the determination of HbA1c using a point-of-care test (POCT) compared to glycemia measurement. In particular, high-performance liquid chromatography (HPLC) is considered the current gold standard for determining HbA1c levels. However, commercial HPLC systems usually have some sort of disadvantages such as bulky size, high-cost and need for qualified operators. Therefore, there is an urgent demand to develop a portable, and fast HbA1c detection system consuming fewer reagents. RESULTS: We present a novel microchip that integrates a micromixer, passive injector, packed column and detection cell. The integrated microchip, in which all the microstructures were formed in the CNC machining center through micro-milling, is small in size (30 mm × 70 mm × 10 mm), and can withstand 1600 psi of liquid pressure. The integrated design is beneficial to reduce the band broadening caused by dead volume. Based on the microchip, a microchip liquid chromatography (LC) system was built and applied to the analysis of HbA1c. The separation conditions of HbA1c in blood calibrator samples were optimized using the microchip LC system. Samples containing four levels of HbA1c were completely separated within 2 min in optimal gradient conditions, with an inaccuracy (<3.2 %), a coefficient of variation (c.v. < 2.1 %) and a correlation coefficient (R2 = 0.993), indicating excellent separation efficiency and reproducibility. SIGNIFICANCE: The POCT of HbA1c is critical for diabetes diagnosis. The microchip chromatography system was developed for HbA1c determination, which contains an integrated microchip and works under a gradient elution. It surpasses existing chip technology in terms of separation performance and detection speed, providing a competitive advantage for POCT of HbA1c. It is considered one important step for realizing efficient portable systems for timely and accurate diabetes diagnosis.


Subject(s)
Diabetes Mellitus , Humans , Glycated Hemoglobin , Reproducibility of Results , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods
5.
Microsyst Nanoeng ; 9: 126, 2023.
Article in English | MEDLINE | ID: mdl-37829160

ABSTRACT

Bacterial cellulose (BC), a natural biomaterial synthesized by bacteria, has a unique structure of a cellulose nanofiber-weaved three-dimensional reticulated network. BC films can be ultrasoft with sufficient mechanical strength, strong water absorption and moisture retention and have been widely used in facial masks. These films have the potential to be applied to implantable neural interfaces due to their conformality and moisture, which are two critical issues for traditional polymer or silicone electrodes. In this work, we propose a micro-electrocorticography (micro-ECoG) electrode named "Brainmask", which comprises a BC film as the substrate and separated multichannel parylene-C microelectrodes bonded on the top surface. Brainmask can not only guarantee the precise position of microelectrode sites attached to any nonplanar epidural surface but also improve the long-lasting signal quality during acute implantation with an exposed cranial window for at least one hour, as well as the in vivo recording validated for one week. This novel ultrasoft and moist device stands as a next-generation neural interface regardless of complex surface or time of duration.

6.
Micromachines (Basel) ; 14(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37763867

ABSTRACT

A VCF-based mode-matching micromachine-optimized tuning fork gyroscope is proposed to not only maximize the scale factor of the device, but also avoid use of an additional quadrature-nulling loop to prevent structure complexity, pick-up electrode occupation, and coupling with a mode-matching loop. In detail, a mode-matching, closed-loop system without a quadrature-nulling loop is established, and the corresponding convergence and matching error are quantitatively analyzed. The optimal straight beam of the gyro structure is then modeled to significantly reduce the quadrature coupling. The test results show that the frequency split is narrowed from 20 Hz to 0.014 Hz. The scale factor is improved 20.6 times and the bias instability (BI) is suppressed 3.28 times. The observed matching accuracy demonstrates that a mode matching system without a quadrature suppression loop is feasible and that the proposed device represents a competitive design for a mode-matching gyroscope.

7.
Micromachines (Basel) ; 14(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37420992

ABSTRACT

A micro-inertial measurement unit (MIMU) is usually used to sense the angular rate and acceleration of the flight carrier. In this study, multiple MEMS gyroscopes were used to form a spatial non-orthogonal array to construct a redundant MIMU system, and an optimal Kalman filter (KF) algorithm was established by a steady-state KF gain to combine array signals to improve the MIMU's accuracy. The noise correlation was used to optimize the geometric layout of the non-orthogonal array and reveal the mechanisms of influence of correlation and geometric layout on MIMU's performance improvement. Additionally, two different conical configuration structures of a non-orthogonal array for 4,5,6,8-gyro were designed and analyzed. Finally, a redundant 4-MIMU system was designed to verify the proposed structure and KF algorithm. The results demonstrate that the input signal rate can be accurately estimated and that the gyro's error can also be effectively reduced through fusion of non-orthogonal array. The results for the 4-MIMU system illustrate that the gyro's ARW and RRW noise can be decreased by factors of about 3.5 and 2.5, respectively. In particular, the estimated errors (1σ) on the axes of Xb, Yb and Zb were 4.9, 4.6 and 2.9 times lower than that of the single gyroscope.

8.
ACS Nano ; 17(16): 16160-16173, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37523784

ABSTRACT

There is huge demand for recreating human skin with the functions of epidermis and dermis for interactions with the physical world. Herein, a biomimetic, ultrasensitive, and multifunctional hydrogel-based electronic skin (BHES) was proposed. Its epidermis function was mimicked using poly(ethylene terephthalate) with nanoscale wrinkles, enabling accurate identification of materials through the capabilities to gain/lose electrons during contact electrification. Internal mechanoreceptor was mimicked by interdigital silver electrodes with stick-slip sensing capabilities to identify textures/roughness. The dermis function was mimicked by patterned microcone hydrogel, achieving pressure sensors with high sensitivity (17.32 mV/Pa), large pressure range (20-5000 Pa), low detection limit, and fast response (10 ms)/recovery time (17 ms). Assisted by deep learning, this BHES achieved high accuracy and minimized interference in identifying materials (95.00% for 10 materials) and textures (97.20% for four roughness cases). By integrating signal acquisition/processing circuits, a wearable drone control system was demonstrated with three-degree-of-freedom movement and enormous potentials for soft robots, self-powered human-machine interaction interfaces of digital twins.


Subject(s)
Deep Learning , Wearable Electronic Devices , Humans , Hydrogels , Biomimetics , Skin
9.
Anal Chim Acta ; 1238: 340243, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36464439

ABSTRACT

The digital polymerase chain reaction (dPCR) technique can quantify specific sequences of deoxyribonucleic acid using either a droplet-based or chip-based system. dPCR duplexing methods in a single fluorescence channel are typically based on the difference in fluorescence amplitude (F) between two targets. The different targets are distinguished from each other by the F-value variation using non-equal probe concentrations or different target lengths. In the present study, we propose a single fluorescence channel-based dPCR duplexing method that combines a specific probe and intercalating dye to increase the difference in F values between the two targets. We selected two sequences, one from chromosome 18 (Chr18) detected only by the intercalating dye EvaGreen and the other from chromosome 21 (Chr21) detected by a combination of a 6-carboxyfluorescein (FAM) probe and EvaGreen. We performed the dPCR protocol and imaged the dPCR chip at room temperature to verify the proposed duplexing method. The result revealed that the difference in F values between Chr18 and Chr21 increased from ≈5% to 20% when using the FAM probe for Chr21 compared with the detection of both amplicons using EvaGreen only. The added FAM probe enabled two-target discrimination using a single-color fluorescent channel. We further determined the difference in F values at different temperatures using artificial dPCR images. This proposed method represents a simple option for single fluorescence channel dPCR duplexing, making it suitable for simplified dPCR systems used for point-of-care applications.


Subject(s)
Coloring Agents , Point-of-Care Systems , Polymerase Chain Reaction
10.
ACS Nano ; 16(12): 20445-20456, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36468939

ABSTRACT

Low power and high switching ratio are the development direction of the next generation of resistive random access memory (RRAM). Previous techniques could not increase the switching ratio while reducing the SET power. Here, we report a method to fabricate low-power and high-switching-ratio RRAM by adjusting the interstice radius (rg) between the van der Waals (vdW) layers of transitional-metal dichalcogenides (TMDs), which simultaneously increases the switching ratio and reduces the SET power. The SET voltage, SET power, switching ratio and endurance of the device are strongly correlated with rg. When the ratio of rg to the radius of the metal ions that form the conductive filaments (rg/rAg+) is near 1, the SET voltage and SET power vertically decrease while the switching ratio vertically rises with increasing rg/rAg+. For the fabricated Ag/[SnS2/poly(methyl methacrylate)]/Cu RRAM with an rg/rAg+ of 1.04, the SET voltage, SET power and switching ratio are 0.14 V, 10-10 W and 106, respectively. After 104 switching cycles and a 104 s retention time, the switching ratio of the device can still be stable above 106. Bending has no influence on the performance of the device when the bending radius is not <2 mm.

11.
Microsyst Nanoeng ; 8: 95, 2022.
Article in English | MEDLINE | ID: mdl-36060524

ABSTRACT

We propose and numerically investigate a brand-new, high-sensitivity progressive wave gyroscope based on acousto-optic effects for the measurement of rotational angular velocity. Unlike the traditional surface acoustic wave (SAW) gyroscope, which uses shifts in the SAW frequency to characterize the rotational angular velocity, this study uses acousto-optic effects to detect changes in refractive index caused by mechanical strain, measuring the angular velocity by the output optical power intensity of the optical waveguide. The three-dimensional finite element analysis method is utilized to build an SAW excitation model and optical detection model. We show that the sensitivity of the SAW gyroscope is highly dependent upon geometric parameters of the structure and that the mechanical strain induced by the progressive wave of the SAW can be effectively measured by the optical power intensity under the action of external angular velocity. The superiority of the proposed structure is substantiated by its achievement of a theoretical sensitivity of 1.8647 (mW/m2)/(rad/s) and high impact resistance of 220,000 g. By means of normalization, the sensitivity of the proposed structure can be enhanced by four orders of magnitude compared to the traditional SAW gyroscope. The novel structure combines the advantages of both conventional microscale vibrating gyroscopes and optical gyroscopes, providing a powerful solution for performance enhancement of SAW gyroscopes and, thereby, enabling application in the field of inertial devices.

12.
Microsyst Nanoeng ; 8: 42, 2022.
Article in English | MEDLINE | ID: mdl-35498340

ABSTRACT

This paper outlines the design of a novel mode-localized electric current sensor based on a mechanically sensitive element of weakly coupled resonator systems. With the advantage of a high voltage sensitivity of weakly coupled resonator systems, the current under test is converted to voltage via a silicon shunt resistor, which causes stiffness perturbation to one resonator. The mode-localization phenomenon alters the energy distribution in the weakly coupled resonator system. A theoretical model of current sensing is established, and the performance of the current sensor is determined: the sensitivity of the electric current sensor is 567/A, the noise floor is 69.3 nA/√Hz, the resolution is 183.6 nA, and the bias instability is 81.6 nA. The mode-localized electric current sensor provides a new approach for measuring sub-microampere currents for applications in nuclear physics, including for photocurrent signals and transistor leakage currents. It could also become a key component of a portable mode-localized multimeter when combined with a mode-localized voltmeter. In addition, it has the potential for use in studying sensor arrays to achieve higher resolution.

13.
Electrophoresis ; 43(21-22): 2156-2164, 2022 11.
Article in English | MEDLINE | ID: mdl-35305273

ABSTRACT

Microfluidic impedance cytometry shows a great value in biomedical diagnosis. However, the crosstalk between neighboring microelectrodes strongly weakens the impedance signal. Hereby, we demonstrate a novel microfluidic impedance cytometer consisted of sensing electrodes and ground electrodes (GNDs). The simulation reveals a signal enhancement by more than five times with GNDs compared to that without ones. We also found that the linear correlation between the impedance at a high frequency and that at a low frequency varies as microparticle size changes, which can be used for microparticle classification. The study can help with microelectrode optimization and signal processing for microfluidic impedance analysis.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Microelectrodes , Electric Impedance , Flow Cytometry
14.
Micromachines (Basel) ; 13(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35334750

ABSTRACT

Lower stiffness can improve the performance of capacitive-based microelectromechanical systems sensors. In this paper, softened beams, achieved by the electrostatic assembly approach, are proposed to lower the stiffness of a capacitive MEMS accelerometer. The experiments show that the stiffness of the accelerometer is reduced by 43% with softened beams and the sensitivity is increased by 72.6%. As a result, the noise of the accelerometer is reduced to 26.2 µg/√Hz with an improvement of 44.5%, and bias instability is reduced to 5.05 µg with an enhancement of 38.7%. The electrostatic assembly-based stiffness softening technique is proven to be effective and can be used in many types of MEMS devices.

15.
Lab Chip ; 22(7): 1333-1343, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35258048

ABSTRACT

The digital polymerase chain reaction (dPCR) is an irreplaceable variant of PCR techniques due to its capacity for absolute quantification and detection of rare deoxyribonucleic acid (DNA) sequences in clinical samples. Image processing methods, including micro-chamber positioning and fluorescence analysis, determine the reliability of the dPCR results. However, typical methods demand high requirements for the chip structure, chip filling, and light intensity uniformity. This research developed an image-to-answer algorithm with single fluorescence image capture and known image-related error removal. We applied the Hough transform to identify partitions in the images of dPCR chips, the 2D Fourier transform to rotate the image, and the 3D projection transformation to locate and correct the positions of all partitions. We then calculated each partition's average fluorescence amplitudes and generated a 3D fluorescence intensity distribution map of the image. We subsequently corrected the fluorescence non-uniformity between partitions based on the map and achieved statistical results of partition fluorescence intensities. We validated the proposed algorithms using different contents of the target DNA. The proposed algorithm is independent of the dPCR chip structure damage and light intensity non-uniformity. It also provides a reliable alternative to analyze the results of chip-based dPCR systems.


Subject(s)
DNA , Image Processing, Computer-Assisted , Algorithms , DNA/genetics , Polymerase Chain Reaction , Reproducibility of Results
16.
Adv Sci (Weinh) ; 9(10): e2104168, 2022 04.
Article in English | MEDLINE | ID: mdl-35098703

ABSTRACT

Rapid advances in wearable electronics and mechno-sensational human-machine interfaces impose great challenges in developing flexible and deformable tactile sensors with high efficiency, ultra-sensitivity, environment-tolerance, and self-sustainability. Herein, a tactile hydrogel sensor (THS) based on micro-pyramid-patterned double-network (DN) ionic organohydrogels to detect subtle pressure changes by measuring the variations of triboelectric output signal without an external power supply is reported. By the first time of pyramidal-patterned hydrogel fabrication method and laminated polydimethylsiloxane (PDMS) encapsulation process, the self-powered THS shows the advantages of remarkable flexibility, good transparency (≈85%), and excellent sensing performance, including extraordinary sensitivity (45.97 mV Pa-1 ), fast response (≈20 ms), very low limit of detection (50 Pa) as well as good stability (36 000 cycles). Moreover, with the LiBr immersion treatment method, the THS possesses excellent long-term hyper anti-freezing and anti-dehydrating properties, broad environmental tolerance (-20 to 60 °C), and instantaneous peak power density of 20 µW cm-2 , providing reliable contact outputs with different materials and detecting very slight human motions. By integrating the signal acquisition/process circuit, the THS with excellent self-power sensing ability is utilized as a switching button to control electric appliances and robotic hands by simulating human finger gestures, offering its great potentials for wearable and multi-functional electronic applications.


Subject(s)
Hydrogels , Touch , Electric Power Supplies , Electronics , Humans , Pressure
17.
ACS Omega ; 6(34): 22292-22300, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34497918

ABSTRACT

Real-time (quantitative) polymerase chain reaction (qPCR) has been widely applied in molecular diagnostics due to its immense sensitivity and specificity. qPCR multiplexing, based either on fluorescent probes or intercalating dyes, greatly expanded PCR capability due to the concurrent amplification of several deoxyribonucleic acid sequences. However, probe-based multiplexing requires multiple fluorescent channels, while intercalating dye-based multiplexing needs primers to be designed for amplicons having different melting temperatures. Here, we report a single fluorescent channel-based qPCR duplexing method on a model containing the sequence of chromosomes 21 (Chr21) and 18 (Chr18). We combined nonspecific intercalating dye EvaGreen with a 6-carboxyfluorescein (FAM) probe specific to either Chr21 or Chr18. The copy number (cn) of the target linked to the FAM probe could be determined in the entire tested range from the denaturation curve, while the cn of the other one was determined from the difference between the denaturation and elongation curves. We recorded the amplitude of fluorescence at the end of denaturation and elongation steps, thus getting statistical data set to determine the limit of the proposed method in detail in terms of detectable concentration ratios of both targets. The proposed method eliminated the fluorescence overspilling that happened in probe-based qPCR multiplexing and determined the specificity of the PCR product via melting curve analysis. Additionally, we performed and verified our method using a commercial thermal cycler instead of a self-developed system, making it more generally applicable for researchers. This quantitative single-channel duplexing method is an economical substitute for a conventional rather expensive probe-based qPCR requiring different color probes and hardware capable of processing these fluorescent signals.

18.
RSC Adv ; 11(9): 5204-5217, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-35424465

ABSTRACT

Two-dimensional transition-metal dichalcogenides are considered as promising candidates for next-generation flexible nanoelectronics owing to their compelling properties. The photoelectric performance of a photodetector based on CVD-grown 2D MoS2 was studied. It is found that annealing treatment can make the photoresponsivity and specific detectivity of the CVD-grown 2D MoS2 based photodetector increase from 0.1722 A W-1 and 1014.65 Jones to 0.2907 A W-1 and 1014.84 Jones, respectively, while vulcanization can make the rise response time and fall response time decrease from 0.9013 s and 2.173 s to 0.07779 s and 0.08616 s, respectively. A method to determine the O-doping concentration in the CVD-grown 2D MoS2 has been obtained. The criterion for the CVD-grown 2D MoS2 to transition from an oxygen-doped state to a pure state has been developed. A mechanism explaining the variation in the photoelectric performance of the CVD-grown 2D MoS2 has been proposed. The CVD-grown 2D MoS2 and the annealed CVD-grown 2D MoS2 are oxygen-doped MoS2 while the vulcanized CVD-grown 2D MoS2 is pure MoS2. The variation in the photoelectric performance of CVD-grown 2D MoS2 results from differences in the O-doping concentration and the bandgap.

19.
ACS Omega ; 5(46): 30267-30273, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33251461

ABSTRACT

Since its invention in 1986, the polymerase chain reaction (PCR), has become a well-established method for the detection and amplification of deoxyribonucleic acid (DNA) with a specific sequence. Incorporating fluorescent probes, known as TaqMan probes, or DNA intercalating dyes, such as SYBR Green, into the PCR mixture allows real-time monitoring of the reaction progress and extraction of quantitative information. Previously reported real-time PCR product detection using intercalating dyes required melting curve analysis (MCA) to be performed following thermal cycling. Here, we propose a technique to perform dynamic MCA during each thermal cycle, based on a continuous fluorescence monitoring method, providing qualitative and quantitative sample information. We applied the proposed method in multiplexing detection of hepatitis B virus DNA and complementary DNA of human immunodeficiency virus as well as glyceraldehyde 3-phosphate dehydrogenase in different concentration ratios. We extracted the DNA melting curve and its derivative from each PCR cycle during the transition from the elongation to the denaturation temperature with a set heating rate of 0.8 K·s-1and then used the data to construct individual PCR amplification curves for each gene to determine the initial concentration of DNA in the sample. Our proposed method allows researchers to look inside the PCR in each thermal cycle, determining the PCR product specificity in real time instead of waiting until the end of the PCR. Additionally, the slow transition rate from elongation to denaturation provides a dynamic multiplexing assay, allowing the detection of at least three genes in real time.

20.
Sens Actuators B Chem ; 303: 127098, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-32288256

ABSTRACT

During infectious disease outbreaks, the centers for disease control need to monitor particular areas. Considerable effort has been invested in the development of portable, user-friendly, and cost-effective systems for point-of-care (POC) diagnostics, which could also create an Internet of Things (IoT) for healthcare via a global network. However, at present IoT based on a functional POC instrument is not available. Here we show a fast, user-friendly, and affordable IoT system based on a miniaturized polymerase chain reaction device. We demonstrated the system's capability by amplification of complementary deoxyribonucleic acid (cDNA) of the dengue fever virus. The resulting data were then automatically uploaded via a Bluetooth interface to an Android-based smartphone and then wirelessly sent to a global network, instantly making the test results available anywhere in the world. The IoT system presented here could become an essential tool for healthcare centers to tackle infectious disease outbreaks identified either by DNA or ribonucleic acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...