Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharmaceutics ; 14(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35056987

ABSTRACT

This study aimed to evaluate optimal aerosol and oxygen delivery with a hood on an infant model and a paediatric model. A facemask and a hood with three inlets, with or without a front cover, were used. A small-volume nebuliser with a unit-dose of salbutamol was used for drug delivery and an air entrainment nebuliser was used to deliver oxygen at 35%. Infant and paediatric breathing patterns were mimicked; a bacterial filter was connected to the end of a manikin trachea for aerosol drug collection, and an oxygen analyser was used to measure the oxygen concentration. For the infant model, inhaled drug dose was significantly higher when the nebuliser was placed in the back of the hood and with a front cover. This was verified by complementary computational simulations in a comparable infant-hood model. For the paediatric model, the inhaled dose was greater with a facemask than with a hood. Oxygen delivery with a facemask and a hood with a front cover achieved a set concentration in both models, yet a hood without a front cover delivered oxygen at far lower concentrations than the set concentration.

2.
PLoS One ; 13(3): e0194246, 2018.
Article in English | MEDLINE | ID: mdl-29547638

ABSTRACT

BACKGROUND: Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. METHODS: The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. RESULTS: The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. CONCLUSIONS: Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. TRIAL REGISTRATION: ClinicalTrials.gov PRS / NCT03359148.


Subject(s)
Bacteria , Equipment Contamination , Ventilators, Mechanical/microbiology , Adult , Aged , Aged, 80 and over , Bacteria/isolation & purification , Female , Humans , Male , Middle Aged , Respiration, Artificial/adverse effects , Risk , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...