Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 13(10): 13474-13495, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34091442

ABSTRACT

The medicinal fungus Ganoderma lucidum is used as a dietary supplement and health tonic, but whether it affects longevity remains unclear. We show here that a water extract of G. lucidum mycelium extends lifespan of the nematode Caenorhabditis elegans. The G. lucidum extract reduces the level of fibrillarin (FIB-1), a nucleolar protein that correlates inversely with longevity in various organisms. Furthermore, G. lucidum treatment increases expression of the autophagosomal protein marker LGG-1, and lifespan extension is abrogated in mutant C. elegans strains that lack atg-18, daf-16, or sir-2.1, indicating that autophagy and stress resistance pathways are required to extend lifespan. In cultured human cells, G. lucidum increases concentrations of the LGG-1 ortholog LC3 and reduces levels of phosphorylated mTOR, a known inhibitor of autophagy. Notably, low molecular weight compounds (<10 kDa) isolated from the G. lucidum water extract prolong lifespan of C. elegans and the same compounds induce autophagy in human cells. These results suggest that G. lucidum can increase longevity by inducing autophagy and stress resistance.


Subject(s)
Autophagy , Caenorhabditis elegans/cytology , Caenorhabditis elegans/physiology , Longevity/physiology , Reishi/chemistry , Animals , Caenorhabditis elegans Proteins/metabolism , Cell Line, Tumor , Humans , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
2.
J Ethnopharmacol ; 201: 117-122, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28167294

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The medicinal mushroom Antrodia cinnamomea possesses anticancer properties but the active compounds responsible for these effects are mostly unknown. AIM OF THE STUDY: We aimed to identify novel A. cinnamomea compounds that produce cytotoxic effects on cancer cells. MATERIALS AND METHODS: Using ethanol extraction and chromatography, we isolated the lanostanoid compound lanosta-7,9(11),24-trien-3ß,15α,21-triol (1) from cultured A. cinnamomea mycelium. Cytotoxicity and pro-apoptotic effects of compound 1 were evaluated using the MTS assay and flow cytometry analysis, respectively. RESULTS: Compound 1 produced cytotoxic effects on the nasopharyngeal carcinoma cell lines TW02 and TW04, with IC50 values of 63.3 and 115.0µM, respectively. On the other hand, no cytotoxic effects were observed on non-tumorigenic nasopharyngeal epithelial cells (NP69). In addition, compound 1 induced apoptosis in TW02 and TW04 cells as revealed by flow cytometry analysis. CONCLUSIONS: Our results demonstrate for the first time the presence of pinicolol B in A. cinnamomea mycelium and suggest that this compound may contribute to the anticancer effects of A. cinnamomea.


Subject(s)
Antineoplastic Agents/pharmacology , Antrodia , Triterpenes/pharmacology , Apoptosis/drug effects , Carcinoma/drug therapy , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Humans , Mycelium , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...