Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 25905, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27174567

ABSTRACT

Dissecting the complexities of branched peptide-lipopolysaccharides (LPS) interactions provide rationale for the development of non-cytotoxic antibiotic adjuvants. Using various biophysical methods, we show that the branched peptide, B2088, binds to lipid A and disrupts the supramolecular organization of LPS. The disruption of outer membrane in an intact bacterium was demonstrated by fluorescence spectroscopy and checkerboard assays, the latter confirming strong to moderate synergism between B2088 and various classes of antibiotics. The potency of synergistic combinations of B2088 and antibiotics was further established by time-kill kinetics, mammalian cell culture infections model and in vivo model of bacterial keratitis. Importantly, B2088 did not show any cytotoxicity to corneal epithelial cells for at least 96 h continuous exposure or hemolytic activity even at 20 mg/ml. Peptide congeners containing norvaline, phenylalanine and tyrosine (instead of valine in B2088) displayed better synergism compared to other substitutions. We propose that high affinity and subsequent disruption of the supramolecular assembly of LPS by the branched peptides are vital for the development of non-cytotoxic antibiotic adjuvants that can enhance the accessibility of conventional antibiotics to the intracellular targets, decrease the antibiotic consumption and holds promise in averting antibiotic resistance.


Subject(s)
Antimicrobial Cationic Peptides/administration & dosage , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Keratitis/drug therapy , Lipopolysaccharides/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Load/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Gram-Negative Bacteria/metabolism , Humans , Keratitis/microbiology , Lipopolysaccharides/metabolism , Mice , Molecular Dynamics Simulation , Spectrometry, Fluorescence
2.
PLoS One ; 9(2): e87730, 2014.
Article in English | MEDLINE | ID: mdl-24498363

ABSTRACT

Taking advantage of the cluster effect observed in multivalent peptides, this work describes antifungal activity and possible mechanism of action of tetravalent peptide (B4010) which carries 4 copies of the sequence RGRKVVRR through a branched lysine core. B4010 displayed better antifungal properties than natamycin and amphotericin B. The peptide retained significant activity in the presence of monovalent/divalent cations, trypsin and serum and tear fluid. Moreover, B4010 is non-haemolytic and non-toxic to mice by intraperitoneal (200 mg/kg) or intravenous (100 mg/kg) routes. S. cerevisiae mutant strains with altered membrane sterol structures and composition showed hyper senstivity to B4010. The peptide had no affinity for cell wall polysaccharides and caused rapid dissipation of membrane potential and release of vital ions and ATP when treated with C. albicans. We demonstrate that additives which alter the membrane potential or membrane rigidity protect C. albicans from B4010-induced lethality. Calcein release assay and molecular dynamics simulations showed that the peptide preferentially binds to mixed bilayer containing ergosterol over phophotidylcholine-cholesterol bilayers. The studies further suggested that the first arginine is important for mediating peptide-bilayer interactions. Replacing the first arginine led to a 2-4 fold decrease in antifungal activities and reduced membrane disruption properties. The combined in silico and in vitro approach should facilitate rational design of new tetravalent antifungal peptides.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Saccharomyces cerevisiae/drug effects , Animals , Calorimetry , Candida albicans/growth & development , Candida albicans/metabolism , Cell Membrane/metabolism , Cells, Cultured , Circular Dichroism , Conjunctiva/cytology , Conjunctiva/drug effects , Conjunctiva/metabolism , Electrophoresis, Polyacrylamide Gel , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Hemolysis/drug effects , Humans , Lipid Bilayers/metabolism , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Rabbits , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...