Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Inform Decis Mak ; 17(1): 162, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29212472

ABSTRACT

BACKGROUND: Autism Spectrum Disorder (ASD) is one of the fastest-growing developmental disorders in the United States. It was hypothesized that variations in the placental chorionic surface vascular network (PCSVN) structure may reflect both the overall effects of genetic and environmentally regulated variations in branching morphogenesis within the conceptus and the fetus' vital organs. This paper provides sound evidences to support the study of ASD risks with PCSVN through a combination of feature-selection and classification algorithms. METHODS: Twenty eight arterial and 8 shape-based PCSVN attributes from a high-risk ASD cohort of 89 placentas and a population-based cohort of 201 placentas were examined for ranked relevance using a modified version of the random forest algorithm, called the Boruta method. Principal component analysis (PCA) was applied to isolate principal effects of arterial growth on the fetal surface of the placenta. Linear discriminant analysis (LDA) with a 10-fold cross validation was performed to establish error statistics. RESULTS: The Boruta method selected 15 arterial attributes as relevant, implying the difference in high and low ASD risk can be explained by the arterial features alone. The five principal features obtained through PCA, which accounted for about 88% of the data variability, indicated that PCSVNs associated with placentas of high-risk ASD pregnancies generally had fewer branch points, thicker and less tortuous arteries, better extension to the surface boundary, and smaller branch angles than their population-based counterparts. CONCLUSION: We developed a set of methods to explain major PCSVN differences between placentas associated with high risk ASD pregnancies and those selected from the general population. The research paradigm presented can be generalized to study connections between PCSVN features and other maternal and fetal outcomes such as gestational diabetes and hypertension.


Subject(s)
Autism Spectrum Disorder/diagnosis , Placenta/blood supply , Placenta/pathology , Risk Assessment , Adult , Algorithms , Chorionic Villi/blood supply , Chorionic Villi/pathology , Cohort Studies , Female , Humans , Infant, Newborn , Pregnancy , Principal Component Analysis
2.
Ultramicroscopy ; 137: 48-54, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24295799

ABSTRACT

We propose a novel method to detect and correct drift in non-raster scanning probe microscopy. In conventional raster scanning drift is usually corrected by subtracting a fitted polynomial from each scan line, but sample tilt or large topographic features can result in severe artifacts. Our method uses self-intersecting scan paths to distinguish drift from topographic features. Observing the height differences when passing the same position at different times enables the reconstruction of a continuous function of drift. We show that a small number of self-intersections is adequate for automatic and reliable drift correction. Additionally, we introduce a fitness function which provides a quantitative measure of drift correctability for any arbitrary scan shape.

3.
IEEE Trans Pattern Anal Mach Intell ; 31(2): 351-63, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19110498

ABSTRACT

The theory of illumination subspaces is well developed and has been tested extensively on the Yale Face Database B (YDB) and CMU-PIE (PIE) data sets. This paper shows that if face recognition under varying illumination is cast as a problem of matching sets of images to sets of images, then the minimal principal angle between subspaces is sufficient to perfectly separate matching pairs of image sets from nonmatching pairs of image sets sampled from YDB and PIE. This is true even for subspaces estimated from as few as six images and when one of the subspaces is estimated from as few as three images if the second subspace is estimated from a larger set (10 or more). This suggests that variation under illumination may be thought of as useful discriminating information rather than unwanted noise.


Subject(s)
Algorithms , Artificial Intelligence , Face/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Lighting/methods , Pattern Recognition, Automated/methods , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Subtraction Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...