Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Anal Chim Acta ; 1308: 342649, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740457

ABSTRACT

BACKGROUND: Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-powered biosensor with a G-quadruplex (G4) reporter offer the benefits of simplicity and sensitivity, making them extensively utilized in detection applications. However, these biosensors used for monitoring pollutants in environmental water samples may face the problem of high background signal and easy interference due to the "signal-off" output. It is obvious that a biosensor based on the CRISPR/Cas12a system and G4 with a "signal on" output mode needs to be designed for detecting environmental pollutants. RESULTS: By using phosphorothioate-modified G4 as a reporter and catalytic hairpin assembly (CHA) integrated with Cas12a as an amplification strategy, a "signal-on" colorimetric/photothermal biosensor (psG4-CHA/Cas) for portable detection of environmental pollutants was developed. With the help of functional nucleotides, the target pollutant (kanamycin or Pb2+) triggers a CHA reaction to produce numerous double-strand DNA, which can activate Cas12a's trans-cleavage activity. The active Cas12a cleaves locked DNA to release caged psG-rich sequences. Upon binding hemin, the psG-rich sequence forms a psG4/hemin complex, facilitating the oxidation of the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the blue photothermal agent (oxTMB). The smartphone was employed for portable colorimetric detection of kanamycin and Pb2+. The detection limits were found to be 100 pM for kanamycin and 50 pM for Pb2+. Detection of kanamycin and Pb2+ was also carried out using a portable thermometer with a detection limit of 10 pM for kanamycin and 8 pM for Pb2+. SIGNIFICANCE: Sensitive, selective, simple and robust detection of kanamycin and Pb2+ in environmental water samples is achieved with the psG4-CHA/Cas system. This system not only provides a new perspective on the development of efficient CRISPR/Cas12a-based "signal-on" designs, but also has a promising application for safeguarding human health and environmental monitoring.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , G-Quadruplexes , Biosensing Techniques/methods , CRISPR-Cas Systems/genetics , Colorimetry , Lead/analysis , Environmental Pollutants/analysis , Limit of Detection , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , Water Pollutants, Chemical/analysis , Bacterial Proteins , Endodeoxyribonucleases
2.
Cell Stem Cell ; 31(1): 89-105.e6, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38141612

ABSTRACT

Stem cells are known for their resilience and enhanced activity post-stress. The mammary gland undergoes frequent remodeling and is subjected to recurring stress during the estrus cycle, but it remains unclear how mammary stem cells (MaSCs) respond to the stress and contribute to regeneration. We discovered that cytotoxic stress-induced activation of CD11c+ ductal macrophages aids stem cell survival and prevents differentiation. These macrophages boost Procr+ MaSC activity through IL1ß-IL1R1-NF-κB signaling during the estrus cycle in an oscillating manner. Deleting IL1R1 in MaSCs results in stem cell loss and skewed luminal differentiation. Moreover, under cytotoxic stress from the chemotherapy agent paclitaxel, ductal macrophages secrete higher IL1ß levels, promoting MaSC survival and preventing differentiation. Inhibiting IL1R1 sensitizes MaSCs to paclitaxel. Our findings reveal a recurring inflammatory process that regulates regeneration, providing insights into stress-induced inflammation and its impact on stem cell survival, potentially affecting cancer therapy efficacy.


Subject(s)
Mammary Glands, Animal , Stem Cells , Female , Animals , Cell Differentiation/physiology , Signal Transduction , Paclitaxel/pharmacology , Paclitaxel/metabolism
3.
Front Endocrinol (Lausanne) ; 14: 1266318, 2023.
Article in English | MEDLINE | ID: mdl-37955009

ABSTRACT

Objective: Patients with pancreatic cancer (PC) have a poor prognosis. Radiotherapy (RT) is a standard palliative treatment in clinical practice, and there is no effective clinical prediction model to predict the prognosis of PC patients receiving radiotherapy. This study aimed to analyze PC's clinical characteristics, find the factors affecting PC patients' prognosis, and construct a visual Nomogram to predict overall survival (OS). Methods: SEER*Stat software was used to collect clinical data from the Surveillance, Epidemiology, and End Results (SEER) database of 3570 patients treated with RT. At the same time, the relevant clinical data of 115 patients were collected from the Affiliated Cancer Hospital of Zhengzhou University. The SEER database data were randomly divided into the training and internal validation cohorts in a 7:3 ratio, with all patients at The Affiliated Cancer Hospital of Zhengzhou University as the external validation cohort. The lasso regression was used to screen the relevant variables. All non-zero variables were included in the multivariate analysis. Multivariate Cox proportional risk regression analysis was used to determine the independent prognostic factors. The Kaplan-Meier(K-M) method was used to plot the survival curves for different treatments (surgery, RT, chemotherapy, and combination therapy) and calculate the median OS. The Nomogram was constructed to predict the survival rates at 1, 3, and 5 years, and the time-dependent receiver operating characteristic curves (ROC) were plotted with the calculated curves. Calculate the area under the curve (AUC), the Bootstrap method was used to plot the calibration curve, and the clinical efficacy of the prediction model was evaluated using decision curve analysis (DCA). Results: The median OS was 25.0, 18.0, 11.0, and 4.0 months in the surgery combined with chemoradiotherapy (SCRT), surgery combined with radiotherapy, chemoradiotherapy (CRT), and RT alone cohorts, respectively. Multivariate Cox regression analysis showed that age, N stage, M stage, chemotherapy, surgery, lymph node surgery, and Grade were independent prognostic factors for patients. Nomogram models were constructed to predict patients' OS. 1-, 3-, and 5-year Time-dependent ROC curves were plotted, and AUC values were calculated. The results suggested that the AUCs were 0.77, 0.79, and 0.79 for the training cohort, 0.79, 0.82, and 0.81 for the internal validation cohort, and 0.73, 0.93, and 0.88 for the external validation cohort. The calibration curves Show that the model prediction probability is in high agreement with the actual observation probability, and the DCA curve shows a high net return. Conclusion: SCRT significantly improves the OS of PC patients. We developed and validated a Nomogram to predict the OS of PC patients receiving RT.


Subject(s)
Nomograms , Pancreatic Neoplasms , Humans , East Asian People , Models, Statistical , Pancreatic Neoplasms/radiotherapy , Prognosis , SEER Program , Pancreatic Neoplasms
4.
Front Oncol ; 13: 1220047, 2023.
Article in English | MEDLINE | ID: mdl-37810984

ABSTRACT

Purpose: To compare Whole-brain radiation therapy with simultaneous integrated boost (WBRT+SIB) to stereotactic radiosurgery (SRS)for non-small cell lung cancer (NSCLC)with brain metastases (BMs)in terms of overall survival (OS), intracranial progression-free-survival(iPFS), toxicity and objective response rate (ORR). Methods: A retrospective review was performed in our hospital of 90 patients diagnosed with NSCLC- BM who received either SRS (n = 48) or WBRT+SIB (n = 42) from January 2016 to January 2022. 76 (84.44%) patients received systemic drug therapy after radiotherapy, including chemotherapy(n=53), targeted therapy(n=40), immunotherapy(n=23), and anti-vascular drug therapy(n=45). OS and iPFS were estimated by the Kaplan-Meier method and compared using the log-rank test. Univariate and Multivariate analysis of the prognostic factors was performed using the Cox proportional hazard regression model. Results: The WBRT+SIB cohort had a longer median iPFS (20.0 versus (VS) 12.0 months, P = 0.0069) and a similar median OS (32.0 vs 28.0 months, P = 0.195) than the SRS cohort. Intracranial objective response rates in WBRT +SIB and SRS cohorts were 76.19% and 70.09%, respectively (P = 0.566). Disease control rates were 88.09% and 83.33%, respectively (P = 0.521). Multivariate analysis showed that WBRT+SIB is the only factor affecting iPFS(hazard ratio (HR):0.597 {95%confidence interval(CI):0.370-0.966}, P=0.035). Sex, Liver metastasis and Lymph node metastasis are risk factors for NSCLC-BM. Conclusion: In the context of systemic drug therapy, WBRT+SIB may have better intracranial local control than SRS in NSCLC-BM patients.

5.
J Environ Manage ; 342: 118143, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37196621

ABSTRACT

The performance of an electric-integrated vertical flow constructed wetland (E-VFCW) for chloramphenicol (CAP) removal, changes in microbial community structure, and the fate of antibiotic resistance genes (ARGs) were evaluated. CAP removal in the E-VFCW system was 92.73% ± 0.78% (planted) and 90.80% ± 0.61% (unplanted), both were higher than the control system which was 68.17% ± 1.27%. The contribution of anaerobic cathodic chambers in CAP removal was higher than the aerobic anodic chambers. Plant physiochemical indicators in the reactor revealed electrical stimulation increased oxidase activity. Electrical stimulation enhanced the enrichment of ARGs in the electrode layer of the E-VFCW system (except floR). Plant ARGs and intI1 levels were higher in the E-VFCW than in the control system, suggesting electrical stimulation induces plants to absorb ARGs, reducing ARGs in the wetland. The distribution of intI1 and sul1 genes in plants suggests that horizontal transfer may be the main mechanism dispersing ARGs in plants. High throughput sequencing analysis revealed electrical stimulation selectively enriched CAP degrading functional bacteria (Geobacter and Trichlorobacter). Quantitative correlation analysis between bacterial communities and ARGs confirmed the abundance of ARGs relates to the distribution of potential hosts and mobile genetic elements (intI1). E-VFCW is effective in treating antibiotic wastewater, however ARGs potentially accumulate.


Subject(s)
Chloramphenicol , Wetlands , Chloramphenicol/pharmacology , Chloramphenicol/analysis , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Wastewater , Bacteria/genetics
6.
Sci Rep ; 12(1): 21448, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509833

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) will be ingested by people through different ways to threaten their health during play, so the environmental quality of the park directly affects the health of tourists and residents. Using eight typical parks in Urumqi in Northwest China as the study area, we used GC-MS to detect the PAHs content in the park surface soil and 10 common plants in the park in different seasons. The results showed that the content of PAHs in park soil in the summer was 5-6 times that in the winter, and the monomer PAHs in some park soil sampling points were higher than the soil pollution risk screening value. And the contamination level at these sampling sites was also higher compared to other sampling sites. In summer, the plants with high PAHs content in leaves are short herbs, while in winter, they are tall arbors. The PAHs of the park soil are mainly composed of high-cyclic aromatic hydrocarbons, and are mainly of traffic origin. The proportion of low-ring aromatic hydrocarbons in the winter was significantly higher than that in the summer. The source of PAHs in plants in summer is similar to that in soil, but the source of PAHs in plants in winter is more complex. The toxicity equivalent concentration method values of soil PAHs in South Park, Zhiwu Park, Shihua Park and Toutunhe Park were higher than that in other parks. The lifetime carcinogenic risk (ILCRs) values of some sampling points in these four parks in the summer were relatively high. The average ILCRs of adults and children in all parks reached a low-risk level in summer. The carcinogenic risk in children is much higher than that of adults.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Adult , Child , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Soil Pollutants/analysis , Environmental Monitoring , Risk Assessment , Carcinogens/analysis , China
7.
Article in English | MEDLINE | ID: mdl-36430083

ABSTRACT

Diclofenac, ibuprofen, and carbamazepine are frequently detected in the environment, where they pose a threat to organisms and ecosystems. We developed anaerobic-aerobic coupled upflow bioelectrochemical reactors (AO-UBERs) with different voltages, hydraulic retention times (HRTs), and types of electrode conversion, and evaluated the ability of the AO-UBERs to remove the three pharmaceuticals. This study showed that when a voltage of 0.6 V was applied, the removal rate of ibuprofen was slightly higher in the system with aerobic cathodic and anaerobic anodic chambers (60.2 ± 11.0%) with HRT of 48 h than in the control systems, and the removal efficiency reached stability faster. Diclofenac removal was 100% in the 1.2 V system with aerobic anodic and anaerobic cathodic chambers, which was greater than in the control system (65.5 ± 2.0%). The contribution of the aerobic cathodic-anodic chambers to the removal of ibuprofen and diclofenac was higher than that of the anaerobic cathodic-anodic chambers. Electrical stimulation barely facilitated the attenuation of carbamazepine. Furthermore, biodegradation-related species (Methyloversatilis, SM1A02, Sporomusa, and Terrimicrobium) were enriched in the AO-UBERs, enhancing pharmaceutical removal. The current study sheds fresh light on the interactions of bacterial populations with the removal of pharmaceuticals in a coupled system.


Subject(s)
Waste Disposal, Fluid , Water Pollutants, Chemical , Bioreactors/microbiology , Anaerobiosis , Diclofenac , Ibuprofen , Water Pollutants, Chemical/analysis , Ecosystem , Carbamazepine , Pharmaceutical Preparations
8.
Cell Rep ; 38(11): 110530, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35294891

ABSTRACT

Subsets of group 3 innate lymphoid cells (ILC3s) are heterogeneous in development and function and play differential roles in intestinal immunity. Histone modifications are involved in the fate commitment of immune cells, including ILC3s. Here, we report that deletion of Setd2, histone H3K36 methyltransferase, in ILC3s results in increased generation of NKp46+ILC3s with enhanced cytotoxic signatures and tumor-suppressive capacity. Meanwhile, Rag1-/-RorcCreSetd2flox/flox mice have fewer CCR6+ILC3s and less defective solitary intestinal lymphoid tissue formation, accompanied by reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) production by NKp46-ILC3s and decreased CD11b+CD103+ dendritic cell accumulation. The deficiency of Setd2-/-NKp46-ILC3s may contribute to disturbed RORγt+Treg homeostasis and intestinal inflammation in Rag1-/-RorcCreSetd2flox/flox mice upon T cell reconstitution. Setd2 regulates genome accessibility imprinting gene mRNA expression, with a more profound effect on NKp46+ILC3s than NKp46-ILC3s. Therefore, Setd2 determines distinct chromatin status and transcriptomic programs of ILC3 subsets to affect their function and intestinal immunity.


Subject(s)
Immunity, Innate , Lymphocytes , Animals , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Homeodomain Proteins/genetics , Intestinal Mucosa , Intestines , Mice
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(1): 15-19, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35048594

ABSTRACT

The circadian rhythm is a widely-recognized phenomenon, according to which the life activities of organisms change periodically, synchronizing with the day and night cycles. The activities of the immune system are also regulated by the circadian rhythm. Group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) cells (ILC3/Th17) are the innate and adaptive subsets of immune cells mediating type 17 immune response, which is featured by the expression of transcription factor retinoid orphan receptor gamma t (RORγt) and the production of interleukin (IL)-17 and IL-22. The processes of type 17 immune response are completed mainly through the participation of ILC3/Th17 and are closely associated with the intestinal immune response. Recent studies have found that the immune response mediated by ILC3/Th17 is intricately regulated by the circadian rhythm through molecular mechanisms controlling the circadian rhythm, or through other external factors that change according to the light-darkness cycle, for example the food intake rhythm. The secretion of cytokines changes along with the regulatory effect of circadian rhythm on ILC3/Th17, which in turn impacts, to a certain degree, on the onset and development of intestinal inflammatory diseases, including bacterial infection and autoimmune diseases. The understanding of mechanisms regulating ILC3/Th17 responses by the circadian rhythm may promote better understanding of the course of action of the immune system and facilitate the development and discovery of potential targets for treatment of intestinal inflammatory diseases.


Subject(s)
Circadian Rhythm , Immunity, Innate , Cytokines , Intestines , Lymphocytes , Th17 Cells
10.
Sci Total Environ ; 766: 144230, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33418257

ABSTRACT

Nitrite-dependent anaerobic methane-oxidation (n-damo) is a potential novel technology for nitrogen removal in anaerobic wastewater treatment. In this study, Geobacter sulfurreducens (G) was applied to stimulate n-damo activity. Conductive materials such as nano-magnetite (M) or aggregating agents such as hydroxylapatite (H) were co-added with G. sulfurreducens to further investigate the enhancement effect. Results showed that the nitrite reduction activity of the n-damo culture was promoted by G. sulfurreducens, with 1.71-2.38 times higher in treatment G, G + M, and G + H than that in the control, but was inhibited by the single addition of hydroxylapatite. N-damo bacterial abundances based on the qPCR of the n-damo-specific pmoA gene increased in treatments with G. sulfurreducens, compared with that of the control. High-throughput sequencing analysis revealed the enrichment of uncultured phylum WPS-2 in treatments with G. sulfurreducens. Fluorescence in situ hybridization verified the co-occurrence pattern of n-damo bacteria (NC10), G. sulfurreducens, and type-I aerobic methanotrophs (Methylomonas spp.). The above results corroborated the microbial interspecies electron transfer (MIET) potentiality of the n-damo enrichment. Our study provides a novel pathway for enhancing MIET to stimulate n-damo process.


Subject(s)
Methane , Nitrites , Anaerobiosis , Denitrification , Geobacter , In Situ Hybridization, Fluorescence , Oxidation-Reduction
11.
Bioresour Technol ; 323: 124620, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33429314

ABSTRACT

In this study, physio-chemical properties, 45 antibiotics, 6 heavy metals, 42 antibiotic resistance genes (ARGs), 3 mobile genetic elements, and the bacterial community structure were investigated to analyze the fate of ARGs during sheep manure aerobic heap composting. Results showed that sheep manure heap composting could produce mature compost. The degradation processes reduced the total antibiotics content by 85%. The abundance of ARGs and mobile genetic elements (MGEs) were enriched 9-fold, with the major increases to sul and tet genes (sulI, sulII, tetQ, and tetX). Tetracycline and sulfonamide resistance genes were the most abundant ARGs after composting (more than 88% of all genes). The genes tetA, tetX and sulI were related to the most diverse bacteria that were most able to proliferate during heap composting. Therefore, sulI and tetX are the major ARGs to be controlled, and Actinobacteria and Bacteroidetes may be the major host bacteria.


Subject(s)
Composting , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial/genetics , Manure , Sheep
12.
Environ Res ; 193: 110565, 2021 02.
Article in English | MEDLINE | ID: mdl-33275920

ABSTRACT

Nitrite-dependent anaerobic methane-oxidizing (n-damo) process has a promising prospect in anaerobic wastewater treatment, utilizing methane as the sole electron source to remove nitrite. However, the metabolic activity of n-damo bacteria is too low for practical application. This study aimed to stimulate n-damo process by introducing conductive nano-magnetite and/or electron shuttle anthraquinone-2,6-disulfonate (AQDS), and also set a comparative treatment of adding insulated ferrihydrite. The results showed that the nitrite reduction rate was enhanced the most significantly in treatment with nano-magnetite, approximately 1.6 times higher than that of the control without any supplement. While ferrihydrite application showed an adverse effect on n-damo process. The well-known aerobic methane oxidizer Methylomonas spp. was found to be enriched under n-damo condition with the supplementation of nano-magnetite and/or AQDS, but abundance of n-damo bacteria did not exhibit significant increase. It was hypothesized that Methylomonas spp. could be survived under anaerobic n-damo condition using oxygen produced by n-damo bacteria for the self-growth, and the nitrite reduction could be promoted through the enhancement of microbial interspecies electron transfer triggered by the introduction of conductive materials. It opens a new direction for the stimulation of n-damo activity, which needs more evidences to verify the hypothetic mechanism.


Subject(s)
Methylomonas , Nitrites , Anaerobiosis , Bioreactors , Denitrification , Methane , Oxidation-Reduction
14.
Mucosal Immunol ; 14(1): 38-52, 2021 01.
Article in English | MEDLINE | ID: mdl-32612160

ABSTRACT

Group 3 innate lymphoid cells (ILC3s), a subset of the innate lymphoid cells, are abundantly present in the intestine and are crucial regulators of intestinal inflammation. Brg1 (Brahma-related gene 1), a catalytic subunit of the mammalian SWI-SNF-like chromatin-remodeling BAF complex, regulates the development and function of various immune cells. Here, by genetic deletion of Brg1 in ILC3s (Smarca4ΔILC3), we prove that Brg1 supports the differentiation of NKp46+ILC3s by promoting the T-bet expression in NKp46-ILC3s, which facilitates the conversion of NKp46-ILC3s to NKp46+ILC3s. Strikingly, Smarca4ΔILC3 mice of the Rag1-/- background develop spontaneous colitis accompanied with increased GM-CSF production in ILC3s. By construction of a mixed bone marrow chimeric system, we demonstrate that Brg1 enhances T-bet and inhibits GM-CSF expression in ILC3s through a cell-intrinsic manner. Blockade of GM-CSF ameliorates colitis in Rag1-/-Smarca4ΔILC3 mice, suggesting that the suppression of GM-CSF production from ILC3s by Brg1 serves as a critical mechanism for Brg1 to restrain intestinal inflammation. We have further demonstrated that Brg1 binds to the Tbx21 and Csf2 gene locus in ILC3s, and favors the active and repressive histones modifications on gene locus of Tbx21 and Csf2 respectively. Our work reveals the essential role of Brg1 in intestinal immunity by regulating ILC3s.


Subject(s)
DNA Helicases/genetics , Immunity, Innate , Immunity, Mucosal , Immunomodulation , Intestines/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Nuclear Proteins/genetics , Transcription Factors/genetics , Animals , Antigens, Ly , DNA Helicases/metabolism , Homeostasis , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Natural Cytotoxicity Triggering Receptor 1 , Nuclear Proteins/metabolism , T-Box Domain Proteins/immunology , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism
15.
Bioresour Technol ; 320(Pt B): 124371, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33186803

ABSTRACT

An electrically stimulated anaerobic-aerobic coupled system was developed to improve the biodegradation of refractory phenolics. Expected 4-nitrophenol, 2, 4-dinitrophenol, and COD removals in the system with aerobic cathodic and anaerobic anodic chambers were approximately 53.7%, 45.4%, 22.3% (intermittent mode) and 37.9%, 19.8%, 17.3% (continuous mode) higher than that in the control system (26.0 ± 6.4%, 30.7 ± 7.1%, 49.8 ± 3.0%). 2, 4-dichlorophenol removal in the system with aerobic anodic and anaerobic cathodic chambers was approximately 28.5% higher than that in the control system (71.4 ± 5.7%). The contribution of the aerobic cathodic/anodic chambers to the removal of phenolic compounds was higher than that of the anaerobic cathodic/anodic chambers. The species related to phenolic biodegradation (Rhodococcus, Achromobacter, PSB-M-3, and Sphingobium) were enriched in the cathodic and anodic chambers of the system. These results showed that intermittent electrical stimulation could be a potential alternative for the efficient degradation of refractory phenolics.


Subject(s)
Bioreactors , Microbiota , Anaerobiosis , Biodegradation, Environmental , Electric Stimulation
16.
Kaohsiung J Med Sci ; 36(5): 344-353, 2020 May.
Article in English | MEDLINE | ID: mdl-32293112

ABSTRACT

The aim of present study was to develop folic acid (FA)-modified nonionic surfactant vesicles (NISVs, niosomes) as carrier systems for targeted delivery of gambogenic acid (GNA). The FA-GNA-NISVs exhibited a mean particle size of 180.77 ± 2.41 nm with a narrow poly dispersion index of 0.147 ± 0.08 determined by dynamic light scattering. Transmission electron microscopy also revealed that the FA-GNA-NISVs were spherical with double-layer structure. Entrapment efficiency (EE%) and zeta potential of the optimal FA-GNA-NISVs were 87.84 ± 1.06% and -37.33 ± 0.33 mV, respectively. Differential scanning calorimetry demonstrated that the GNA was in a molecular or amorphous state inside the FA-NISVs in vitro release profiles suggested that FA-GNA-NISVs could release GNA at a sustained manner, and less than 60% of GNA was released from the FA-NISVs within 12 hours of dialysis. in vivo pharmacokinetic results illustrated that FA-GNA-NISVs had considerably higher Cmax , area under curve (AUC0 - t ) and accumulation in lung. The cell proliferation study shown that the FA-GNA-NISVs significantly enhanced the in vitro cytotoxicity against A549 cells. Flow cytometry and fluorescence microscopy further demonstrated that the FA-GNA-NISVs increased apoptosis compared with nonmodified GNA-NISVs and free GNA. Moreover, FA-GNA-NISVs induced A549 cell apoptosis in a dose-dependent manner. In addition, cellular uptake assays showed a higher uptake of FA-GNA-NISVs than GNA-NISVs as well as free GNA. Taken together, it could be concluded that FA-GNA-NISVs were proposed as a novel targeting carriers for efficient delivering of GNA to cancers cells.


Subject(s)
Folic Acid/chemistry , Surface-Active Agents/chemistry , Xanthenes/pharmacology , A549 Cells , Animals , Apoptosis/drug effects , Drug Liberation , Endocytosis/drug effects , Humans , Liposomes , Particle Size , Rats, Sprague-Dawley , Static Electricity , Tissue Distribution/drug effects , Xanthenes/administration & dosage , Xanthenes/chemistry , Xanthenes/pharmacokinetics
17.
Cell Mol Immunol ; 17(2): 163-177, 2020 02.
Article in English | MEDLINE | ID: mdl-30760919

ABSTRACT

OX40L is one of the co-stimulatory molecules that can be expressed by splenic lymphoid tissue inducer (Lti) cells, a subset of group 3 innate lymphoid cells (ILC3s). OX40L expression in subsets of intestinal ILC3s and the molecular regulation of OX40L expression in ILC3s are unknown. Here, we showed intestinal ILC3s marked as an OX40Lhigh population among all the intestinal leukocytes and were the dominant source of OX40L in Rag1-/- mice. All ILC3 subsets expressed OX40L, and NCR-ILC3s were the most abundant source of OX40L. The expression of OX40L in ILC3s could be upregulated during inflammation. In addition to tumor necrosis factor (TNF)-like cytokine 1A (TL1A), which has been known as a trigger for OX40L, we found that Poly (I:C) representing viral stimulus promoted OX40L expression in ILC3s via a cell-autonomous manner. Furthermore, we demonstrated that IL-7-STAT5 signaling sustained OX40L expression by ILC3s. Intestinal regulatory T cells (Tregs), most of which expressed OX40, had defective expansion in chimeric mice, in which ILC3s were specifically deficient for OX40L expression. Consistently, co-localization of Tregs and ILC3s was found in the cryptopatches of the intestine, which suggests the close interaction between ILC3s and Tregs. Our study has unveiled the crosstalk between Tregs and ILC3s in mucosal tissues through OX40-OX40L signaling, which is crucial for the homeostasis of intestinal Tregs.


Subject(s)
Homeostasis/genetics , Homeostasis/immunology , Immunocompromised Host/genetics , Intestinal Mucosa/immunology , OX40 Ligand/deficiency , Signal Transduction/genetics , T-Lymphocytes, Regulatory/immunology , Animals , Cell Communication/immunology , Cells, Cultured , Coculture Techniques , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Immunity, Innate , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , OX40 Ligand/genetics , Receptors, OX40/metabolism , Signal Transduction/immunology , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism
18.
Sci Total Environ ; 695: 133876, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31756846

ABSTRACT

Anaerobic digestion is an effective biological treatment process that produces methane by degrading organic compounds in waste/wastewater. It is a complicated microbial process by metabolic interactions among different types of microorganisms. In this process, efficient interspecies electron transfer between secondary fermenting bacteria and methanogens is the critical process for fast and effective methanogenesis. In syntrophic metabolism, hydrogen or formate has been considered as the conventional electron carrier transferring electrons from secondary fermenting bacteria to hydrogenotrophic methanogens. Recently, direct interspecies electron transfer (DIET) without the involvement of dissolved redox mediators is arousing great concerns and has been regarded as a more efficient and thermodynamically favorable interspecies electron transfer pathway for methanogenesis. Interspecies electron exchange through DIET is accomplished via the membrane-bound cytochromes or conductive pili. Several kinds of exogenously-added conductive or semiconductive iron oxides have been discovered to greatly enhance anaerobic methanogenesis through promoting DIET. Different (semi)conductive iron oxides give a boost to DIET through different mechanisms based on the physicochemical properties of the iron oxides and the reciprocal interactions between iron oxides and functional microorganisms. In this review, the current understanding of interspecies electron transfer in syntrophic-methanogenic consortions is summarized, the effects and deep-rooted mechanisms of (semi)conductive iron oxides on methanogenesis and DIET are discussed, and possible future perspectives and development directions are suggested for DIET via (semi)conductive iron oxides in anaerobic digestion.


Subject(s)
Biodegradation, Environmental , Anaerobiosis , Bacteria/metabolism , Bioreactors , Electron Transport , Electrons , Fermentation , Ferric Compounds , Methane/metabolism , Semiconductors
19.
Appl Biochem Biotechnol ; 189(3): 884-902, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31140052

ABSTRACT

The substrate to inoculum (S/I) ratio is crucial for the rapid start-up of solid-state anaerobic digestion (SS-AD) systems. In this study, the performance of methane production and microbial community structure were evaluated during co-digestion of rape straw (RS) and dairy manure (DM) at different S/I ratios (2:3, 1:1, 2:1, 3:1, and 4:1) in batch hemi-solid-state anaerobic digestion (HSS-AD) tests. The highest methane yield of 209.1 mL/g VSadded and highest volumetric methane production of 0.4 L/(L·d) were achieved at S/I ratios of 2:3 and 2:1, respectively. Lower S/I ratios (1:2, 1:1, and 2:1) steadily produced biogas throughout the AD period, while higher S/I ratios (3:1 and 4:1) failed to produce biogas during the initial stage of AD because of excess accumulation of volatile fatty acids and low pH. The predominant bacteria and archaea in stable digesters were Firmicutes and acetoclastic Methanosaeta, respectively, while Bacteroidetes predominated and the relative abundance of hydrogenotrophic Methanobacterium increased significantly in acidic digesters. Amounts of bacteria and archaea were inhibited in acidic digesters. Our results provide useful information for enhancing efficient methane production and advancing the understanding of the microbiome in HSS-AD of RS and DM at different S/I ratios.


Subject(s)
Batch Cell Culture Techniques/methods , Biofuels/microbiology , Bioreactors/microbiology , Brassica napus/chemistry , Dairying , Manure , Anaerobiosis , Bacteria/growth & development , Bacteria/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Hydrogen-Ion Concentration , Volatilization
20.
J Allergy Clin Immunol ; 143(1): 229-244.e9, 2019 01.
Article in English | MEDLINE | ID: mdl-29625134

ABSTRACT

BACKGROUND: IL-17 plays a pathogenic role in asthma. ST2- inflammatory group 2 innate lymphoid cells (ILC2s) driven by IL-25 can produce IL-17, whereas ST2+ natural ILC2s produce little IL-17. OBJECTIVE: We characterized ST2+IL-17+ ILC2s during lung inflammation and determined the pathogenesis and molecular regulation of ST2+IL-17+ ILC2s. METHODS: Lung inflammation was induced by papain or IL-33. IL-17 production by lung ILC2s from wild-type, Rag1-/-, Rorcgfp/gfp, and aryl hydrocarbon receptor (Ahr)-/- mice was examined by using flow cytometry. Bone marrow transfer experiments were performed to evaluate hematopoietic myeloid differentiation primary response gene-88 (MyD88) signaling in regulating IL-17 production by ILC2s. mRNA expression of IL-17 was analyzed in purified naive ILC2s treated with IL-33, leukotrienes, and inhibitors for nuclear factor of activated T cells, p38, c-Jun N-terminal kinase, or nuclear factor κ light-chain enhancer of activated B cells. The pathogenesis of IL-17+ ILC2s was determined by transferring wild-type or Il17-/- ILC2s to Rag2-/-Il2rg-/- mice, which further induced lung inflammation. Finally, expression of 106 ILC2 signature genes was compared between ST2+IL-17+ ILC2s and ST2+IL-17- ILC2s. RESULTS: Papain or IL-33 treatment boosted IL-17 production from ST2+ ILC2s (referred to by us as ILC217s) but not ST2- ILC2s. Ahr, but not retinoic acid receptor-related orphan receptor γt, facilitated the production of IL-17 by ILC217s. The hematopoietic compartment of MyD88 signaling is essential for ILC217 induction. IL-33 works in synergy with leukotrienes, which signal through nuclear factor of activated T-cell activation to promote IL-17 in ILC217s. Il17-/- ILC2s were less pathogenic in lung inflammation. ILC217s concomitantly expressed IL-5 and IL-13 but expressed little GM-CSF. CONCLUSION: During lung inflammation, IL-33 and leukotrienes synergistically induce ILC217s. ILC217s are a highly pathogenic and unexpected source for IL-17 in lung inflammation.


Subject(s)
Immunity, Innate , Interleukin-17/immunology , Lung/immunology , Lymphocytes/immunology , Pneumonia/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/immunology , Gene Expression Regulation/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-17/genetics , Interleukin-33/genetics , Interleukin-33/immunology , Interleukins/genetics , Interleukins/immunology , Leukotrienes/genetics , Leukotrienes/immunology , Lung/pathology , Lymphocytes/pathology , Mice , Mice, Knockout , Papain/pharmacology , Pneumonia/genetics , Pneumonia/pathology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...