Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080118

ABSTRACT

Different hierarchical porous In2O3 nanostructures were synthesized by regulating the hydrothermal time and combining it with a self-pore-forming method. The gas-sensing test results show that the response of the sensor based on In2O3 obtained after hydrothermal reaction for 48 h is about 10.4 to 500 ppm methane. Meanwhile, it possesses good reproducibility, stability, selectivity and moisture resistance as well as a good exponential linear relationship between the response to methane and its concentration. In particular, the sensor based on In2O3 can detect a wide range of methane (10~2000 ppm) at near-room temperature (30 °C). The excellent methane sensitivity of the In2O3 sensor is mainly due to its unique nanostructure, which has the advantages of both porous and hierarchical structures. Combined with the DFT calculation, it is considered that the sensitive mechanism is mainly controlled by the surface adsorbed oxygen model. This work provides a feasible strategy for enhancing the gas sensitivity of In2O3 toward methane at low temperatures.

2.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077048

ABSTRACT

In view of the water pollution issues caused by pathogenic microorganisms and harmful organic contaminants, nontoxic, environmentally friendly, and efficient antimicrobial agents are urgently required. Herein, a nickel-based Keggin polyoxomolybdate [Ni(L)(HL)]2H[PMo12O40] 4H2O (1, HL = 2-acetylpyrazine thiosemicarbazone) was prepared via a facile hydrothermal method and successfully characterized. Compound 1 exhibited high stability in a wide range of pH values from 4 to 10. 1 demonstrated significant antibacterial activity, with minimum inhibitory concentration (MIC) values in the range of 0.0019-0.2400 µg/mL against four types of bacteria, including Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Escherichia coli (E. coli), and Agrobacterium tumefaciens (A. tumefaciens). Further time-kill studies indicated that 1 killed almost all (99.9%) of E. coli and S. aureus. Meanwhile, the possible antibacterial mechanism was explored, and the results indicate that the antibacterial properties of 1 originate from the synergistic effect between [Ni(L)(HL)]+ and [PMo12O40]3-. In addition, 1 presented effective adsorption of basic fuchsin (BF) dyes. The kinetic data fitted a pseudo-second-order kinetic model well, and the maximum adsorption efficiency for the BF dyes (29.81 mg/g) was determined by the data fit of the Freundlich isotherm model. The results show that BF adsorption was dominated by both chemical adsorption and multilayer adsorption. This work provides evidence that 1 has potential to effectively remove dyes and pathogenic bacteria from wastewater.


Subject(s)
Nickel , Water Purification , Adsorption , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coloring Agents/pharmacology , Escherichia coli , Nickel/chemistry , Rosaniline Dyes/pharmacology , Staphylococcus aureus
3.
J Colloid Interface Sci ; 612: 664-678, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35026570

ABSTRACT

Given the rise of drug-resistant pathogens and industrial contaminants, the development of efficient and eco-friendly water treatment technologies and materials is highly desirable and urgent. Herein, a multifunctional graphene oxide/chitosan/copper-based polyoxometalate (GO/CS/Cu-POM) nanocomposite (Cu-POM, [Cu(L)4][Cu(L)3(H2O)][Cu(L)(H2O)][P2Mo5O23]·4H2O, L = pyrazole) was synthesized by the ultrasound-assisted self-assembly strategy. The GO/CS/Cu-POM nanocomposite exhibited potent bactericidal properties against gram-positive/negative bacterial strains Staphylococcus aureus (S. aureus, 99.98%), Escherichia coli (E. coli, 99.99%), and drug-resistant E. coli bacterial strains (kanamycin-resistant E. coli 99.93% and ampicillin-resistant E. coli, 97.94%). Further, the antibacterial performance was strongly dependent on synergistic effect between GO/CS and Cu-POM in GO/CS/Cu-POM. The destruction of bacterial membrane and high levels of oxidative stress induced by GO/CS/Cu-POM played a significant role in the bactericidal process. Furthermore, the GO/CS/Cu-POM nanocomposite also displayed superior performance for removal of methylene blue (MB, 96.86%), gentian violet (GV, 97.77%), basic fuchsin (BF, 96.47%), tetracycline (TC, 78.92%) and norfloxacin (NC, 76.26%). Moreover, the main process of dye removal by GO/CS/Cu-POM was controlled by chemisorption. More importantly, the GO/CS/Cu-POM nanocomposite indicated good biocompatibility to human umbilical vein endothelial cells. Current work provides an effective strategy to design multifunctional POM-based composites for water purification and environmental protection.


Subject(s)
Chitosan , Graphite , Nanocomposites , Adsorption , Anions , Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Copper/pharmacology , Endothelial Cells , Escherichia coli , Humans , Polyelectrolytes , Staphylococcus aureus
4.
Inorg Chem ; 60(13): 10022-10029, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34133163

ABSTRACT

A powerful and attractive route to develop novel photocatalysts for C-N bond formation involves the use of pyrrolidine as the substrate and cocatalyst simultaneously. Herein, a new polyoxometalate (POM)-based metal-organic framework, namely, [Ni6(OH)3(H2O)9(DPNDIH)(SiW9O34)]2·2H2O (SiW9Ni6-DPNDI) (DPNDI = N,N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide), was prepared by incorporating a Ni6 cluster-substituted POM anion and a photosensitizer (DPNDI) into a framework. The anion···π interactions and covalent bonds between SiW9Ni6 and DPNDI are beneficial for the consecutive electron separation and transfer. Under visible-light irradiation, DPNDI can be easily excited to generate radical species DPNDI* that could be further excited in the presence of the electron donor pyrrolidine for the inert O2 activation. SiW9Ni6-DPNDI showed a high efficiency in the photocatalysis of C-N bond formation under a mild condition by the synergy of DPNDI and SiW9Ni6. The results of the reaction were confirmed by gas chromatography and 1H NMR. In addition, SiW9Ni6-DPNDI exhibited a high sustainability without an obvious change in yields after five cycles.

5.
Int J Pharm ; 591: 119990, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33075467

ABSTRACT

Herein, a polyoxometalate (POM)-based blend hydrogel system was in situ constructed by incorporating cetyltrimethylammoniumbromide (CTAB)-encapsulated POM cationic micelles to bare hydrogel matrixes followed by copolymerization of multivalent crosslinking groups. It was demonstrated that the fabricated blend hydrogel possessed tunable physicochemical properties, good swelling behavior (maximum swelling rate of 229% in buffer solution of pH 8.0), excellent local action and sustained release of POM component (release ratio achieved nearly 100% at the time of 120 min). Antibacterial activity study revealed that the introduction of POM greatly improved the bioavailability of itself, namely, leading to a more effective enhancement of therapeutic effects (survival ratio of both strains less than 5%). Besides, bactericidal rates (ca. 51%) were achieved even after six runs repeated, thereby verifying the biological application potential of this material. Finally, the practical application potentials were investigated and future prospects in relevant research areas were forecasted.


Subject(s)
Hydrogels , Tungsten Compounds , Anti-Bacterial Agents , Hydrogel, Polyethylene Glycol Dimethacrylate
SELECTION OF CITATIONS
SEARCH DETAIL