Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 625
Filter
1.
Analyst ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855851

ABSTRACT

Aflatoxin B1 (AFB1), classified as a class I carcinogen, is a widespread mycotoxin that poses a serious threat to public health and economic development, and the food safety problems caused by AFB1 have aroused worldwide concern. The development of accurate and sensitive methods for the detection of AFB1 is significant for food safety monitoring. In this work, a sandwich-type photoelectrochemical (PEC) biosensor for AFB1 detection was constructed on the basis of an aptamer-antibody structure. A good photocurrent response was obtained due to the sensitization of In2S3 by Ru(bpy)32+. In addition, this sandwich-type sensor constructed by modification with the antibody, target detector, and aptamer layer by layer attenuated the migration hindering effect of photogenerated carriers caused by the double antibody structure. The aptamer and antibody synergistically recognized and captured the target analyte, resulting in more reliable PEC response signals. CdSe@CdS QDs-Apt were modified as a signal-off probe onto the sensor platform to quantitatively detect AFB1 with a "signal-off" response, which enhanced the sensitivity of the sensor. The PEC biosensor showed a linear response range from 10-12 to 10-6 g mL-1 with a detection limit of 0.023 pg mL-1, providing a feasible approach for the quantitative detection of AFB1 in food samples.

2.
J Cancer Res Clin Oncol ; 150(6): 304, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869633

ABSTRACT

PURPOSE: With the development of immunotherapy research, the role of immune checkpoint blockade (ICB) in the treatment of cervical cancer has been emphasized, but many patients still can't receive long-term benefits from ICB. Poly ADP ribose polymerase inhibitor (PARPi) has been proved to exert significant antitumor effects in multiple solid tumors. Whether cervical cancer patients obtain better benefits from the treatment regimen of PARPi combined with ICB remains unclear. METHODS: The alteration of PD-L1 expression induced by niraparib in cervical cancer cells and its underlying mechanism were assessed by western blot and immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR).The regulation of PTEN by KDM5A was confirmed using Chromatin immunoprecipitation (ChIP) assay and RNA interference. Analyzing the relationship between PD-L1 and immune effector molecules through searching online databases. Therapeutic efficacy of niraparib, PD-L1 blockade or combination was assessed in syngeneic tumor model. The changes of immune cells and cytokines in vivo was detected by immunohistochemistry (IHC) and qRT-PCR. RESULTS: We found that niraparib upregulated PD-L1 expression and potentiated the antitumor effects of PD-L1 blockade in a murine cervical cancer model. Niraparib inhibited the Pten expression by increasing the abundance of KDM5A, which expanded PD-L1 abundance through activating the PI3K-AKT-S6K1 pathway. PD-L1 was positively correlated with immune effector molecules including TNF-α, IFN-γ, granzyme A and granzyme B based on biological information analysis. Niraparib increased the infiltration of CD8+ T cells and the level of IFN-γ, granzyme B in vivo. CONCLUSION: Our findings demonstrates the regulation of niraparib on local immune microenvironment of cervical cancer, and provides theoretical basis for supporting the combination of PARPi and PD-L1 blockade as a potential treatment for cervical cancer.


Subject(s)
B7-H1 Antigen , Indazoles , Piperidines , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/pathology , Female , Humans , Animals , Piperidines/pharmacology , Piperidines/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Indazoles/pharmacology , Indazoles/therapeutic use , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Cell Line, Tumor
3.
Toxicol Res (Camb) ; 13(3): tfae089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863796

ABSTRACT

Background: Organophosphorus compounds, widely used in agriculture and industry, pose a serious threat to human health due to their acute neurotoxicity. Although traditional interventions for organophosphate poisoning are effective, they often come with significant side effects. Objective: This paper aims to evaluate the potential of enzymes within biological organisms as organophosphorus bioclearing agents. It analyses the technical challenges in current enzyme research, such as substrate specificity, stereoselectivity, and immunogenicity, while exploring recent advancements in the field. Methods: A comprehensive review of literature related to detoxifying enzymes or proteins was conducted. Existing studies on organophosphorus bioclearing agents were summarised, elucidating the biological detoxification mechanisms, with a particular focus on advancements in protein engineering and novel delivery methods. Results: Current bioclearing agents can be categorised into stoichiometric and catalytic bioclearing agents, both of which have shown some success in preventing organophosphate poisoning. Technological advancements have significantly improved various properties of bioclearing agents, yet challenges remain, particularly in substrate specificity, stereoselectivity, and immunogenicity. Future research will focus on expanding the substrate spectrum, enhancing catalytic efficiency, prolonging in vivo half-life, and developing convenient administration methods. Conclusion: With the progression of clinical trials, bioclearing agents are expected to become widely used as a new generation of therapeutic organophosphate detoxifiers.

4.
Environ Sci Technol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872439

ABSTRACT

Brominated byproducts and toxicity generation are critical issues for ozone application to wastewater containing bromide. This study demonstrated that ultraviolet/ozone (UV/O3, 100 mJ/cm2, 1 mg-O3/mg-DOC) reduced the cytotoxicity of wastewater from 14.2 mg of pentol/L produced by ozonation to 4.3 mg of pentol/L (1 mg/L bromide, pH 7.0). The genotoxicity was also reduced from 1.65 to 0.17 µg-4-NQO/L by UV/O3. Compared with that of O3 alone, adsorbable organic bromine was reduced from 25.8 to 5.3 µg/L by UV/O3, but bromate increased from 32.9 to 71.4 µg/L. The UV/O3 process enhanced the removal of pre-existing precursors (highly unsaturated and phenolic compounds and poly aromatic hydrocarbons), while new precursors were generated, yet the combined effect of UV/O3 on precursors did not result in a significant change in toxicity. Instead, UV radiation inhibited HOBr concentration through both rapid O3 decomposition to reduce HOBr production and decomposition of the formed HOBr, thus suppressing the AOBr formation. However, the hydroxyl radical-dominated pathway in UV/O3 led to a significant increase of bromate. Considering both organic bromine and bromate, the UV/O3 process effectively controlled both cytotoxicity and genotoxicity of wastewater to mammalian cells, even though an emphasis should be also placed on managing elevated bromate. Futhermore, other end points are needed to evaluate the toxicity outcomes of the UV/O3 process.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124616, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38857547

ABSTRACT

Solid solution of metal-doped oxide has been widely used in material industry and catalysis process. Its performance is highly correlated with the distribution of doped ions. Due to the complex distribution of doped ions in solid solution and its variation with temperatures, to obtain the microstructures of metal-doped ions in solid solution remains a substantial challenge. Taken Ce1-xZrxO2 as a model, the global structure searching, structures proportion with temperature determined by Boltzmann distribution, and the weighted simulation Raman spectra were integrated to explore the microstructures of metal-doped solid solution oxides. It was further verified by application into rutile and anatase TiO2 mixture, indicating that the present method is feasible to deduce the microstructure of metal composite oxides. We anticipate that it provides a powerful solution to explore microstructures of solid solution and complex metal oxides.

6.
J Affect Disord ; 358: 391-398, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38735577

ABSTRACT

BACKGROUND: Personality traits, especially neuroticism, can influence susceptibility to dementia. Social contact mitigates stress and risk of dementia, the extent to which social contact can mitigate excess risk associated with neuroticism remains unclear. We aim to investigate whether active social contact is associated with lower neuroticism-associated excess risk of dementia. METHODS: This prospective cohort study examined 393,939 UK Biobank participants (mean [SD] age: 56.4 [8.1] years; 53.7 % female) assessed from 2006 to 2010 and followed up until December 2022. Neuroticism was measured using the Revised Eysenck Personality Questionnaire. Social contact levels were assessed based on household size, contact with family or friends, and group participation. Dementia was determined using linked electronic health records. RESULTS: High neuroticism was associated with increased all-cause dementia risk and cause-specific dementia. Among high neuroticism participants, excess risk of all-cause dementia showed a stepwise decrease with increasing social contact (low: hazard ratios (HR) = 1.27, 95 % confidence interval (CI) = 1.15-1.40; intermediate: HR = 1.20, 95 % CI = 1.12-1.28; high: HR = 1.07, 95 % CI = 1.00-1.15). High social contact similarly decreased excess risk of cause-specific dementia, comparable to those with low neuroticism. LIMITATIONS: Neuroticism and social contact information relied on self-report questionnaires at baseline, with a potential temporal relationship between these factors. CONCLUSION: Active social contact is associated with a stepwise reduction in excess dementia risk and potentially eliminate excess risk of dementia with high neuroticism individuals, supporting social contact as a preventive strategy to attenuate excess risks of dementia from neuroticism personality trait.


Subject(s)
Dementia , Neuroticism , Humans , Female , Dementia/epidemiology , Dementia/psychology , Male , Prospective Studies , Middle Aged , Aged , Risk Factors , Social Interaction , United Kingdom/epidemiology , Adult
7.
Acta Neuropathol Commun ; 12(1): 76, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755736

ABSTRACT

Activated microglia play an important role in driving photoreceptor degeneration-associated neuroinflammation in the retina. Controlling pro-inflammatory activation of microglia holds promise for mitigating the progression of photoreceptor degeneration. Our previous study has demonstrated that pre-light damage treatment of hyperoside, a naturally occurring flavonol glycoside with antioxidant and anti-inflammatory activities, prevents photooxidative stress-induced photoreceptor degeneration and neuroinflammatory responses in the retina. However, the direct impact of hyperoside on microglia-mediated neuroinflammation during photoreceptor degeneration remains unknown. Upon verifying the anti-inflammatory effects of hyperoside in LPS-stimulated BV-2 cells, our results here further demonstrated that post-light damage hyperoside treatment mitigated the loss of photoreceptors and attenuated the functional decline of the retina. Meanwhile, post-light damage hyperoside treatment lowered neuroinflammatory responses and dampened microglial activation in the illuminated retinas. With respect to microglial activation, hyperoside mitigated the pro-inflammatory responses in DNA-stimulated BV-2 cells and lowered DNA-stimulated production of 2'3'-cGAMP in BV-2 cells. Moreover, hyperoside was shown to directly interact with cGAS and suppress the enzymatic activity of cGAS in a cell-free system. In conclusion, the current study suggests for the first time that the DNA sensor cGAS is a direct target of hyperoside. Hyperoside is effective at mitigating DNA-stimulated cGAS-mediated pro-inflammatory activation of microglia, which likely contributes to the therapeutic effects of hyperoside at curtailing neuroinflammation and alleviating neuroinflammation-instigated photoreceptor degeneration.


Subject(s)
Microglia , Nucleotidyltransferases , Quercetin , Retinal Degeneration , Animals , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Quercetin/pharmacology , Quercetin/analogs & derivatives , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/drug therapy , Retinal Degeneration/prevention & control , Mice , Nucleotidyltransferases/metabolism , Mice, Inbred C57BL , DNA/metabolism , Cell Line , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Photoreceptor Cells, Vertebrate/metabolism , Male
8.
Front Neurosci ; 18: 1379933, 2024.
Article in English | MEDLINE | ID: mdl-38756408

ABSTRACT

Objective: Anti-dipeptidyl-peptidase-like protein-6 (DPPX) encephalitis is a rare autoimmune encephalitis, and clinical and experimental information regarding this disease is limited. We conducted this study to comprehensively describe the clinical characteristics, ancillary test results, neuroimaging results, and treatment response in a group of Chinese patients with anti-DPPX encephalitis for better understanding this disease. Methods: We recruited 14 patients who tested positive for anti-DPPX antibodies in the serum and/or cerebrospinal fluid from 11 medical centers between March 2021 and June 2023. This retrospective study evaluated data on symptoms, autoantibody test, auxiliary examinations, treatments, and outcomes. Results: The average age at diagnosis was 45.93 ± 4.62 years (range: 11-72 years), and 9 of the 14 patients were males. The main symptoms included cognitive impairment (50.0%, 7/14), central nervous system hyperexcitability (42.9%, 6/14), gastrointestinal dysfunction (35.7%, 5/14), and psychiatric disorders (35.7%, 5/14). Notably, we discovered specific findings on 18F-fluorodeoxyglucose positron-emission tomography (PET)/magnetic resonance imaging in two patients. Co-existing autoantibodies were identified in two patients. Parainfection was identified in four patients. One patient had other autoimmune diseases, and one had tumor. Eleven patients received immunotherapy and most patients improved at discharge. Surprisingly, three male patients but no female patients relapsed during the 6 months of follow-up. Conclusion: The development and outcome of anti-DPPX encephalitis are variable. Male patients were predominant in our cohort. The most common symptoms were the classical triad of prodromal gastrointestinal dysfunction, cognitive and mental disorders, and central nervous system hyperexcitability. Infections, immune dysregulation, and tumors may be important etiologies. Long-term monitoring of disease development should be done in male patients. Overall, our results highlight novel clinical characteristics of anti-DPPX encephalitis.

9.
Circulation ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752370

ABSTRACT

BACKGROUND: Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS: We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 (MYH6)-GFP (green fluorescence protein) reporter system. After an independent secondary sgRNA validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS: Transcriptional regulation and trajectory inference from NF2-null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)-LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain-dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS: These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.

10.
Circulation ; 149(23): 1833-1851, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38586957

ABSTRACT

BACKGROUND: Adult mammalian cardiomyocytes have limited proliferative capacity, but in specifically induced contexts they traverse through cell-cycle reentry, offering the potential for heart regeneration. Endogenous cardiomyocyte proliferation is preceded by cardiomyocyte dedifferentiation (CMDD), wherein adult cardiomyocytes revert to a less matured state that is distinct from the classical myocardial fetal stress gene response associated with heart failure. However, very little is known about CMDD as a defined cardiomyocyte cell state in transition. METHODS: Here, we leveraged 2 models of in vitro cultured adult mouse cardiomyocytes and in vivo adeno-associated virus serotype 9 cardiomyocyte-targeted delivery of reprogramming factors (Oct4, Sox2, Klf4, and Myc) in adult mice to study CMDD. We profiled their transcriptomes using RNA sequencing, in combination with multiple published data sets, with the aim of identifying a common denominator for tracking CMDD. RESULTS: RNA sequencing and integrated analysis identified Asparagine Synthetase (Asns) as a unique molecular marker gene well correlated with CMDD, required for increased asparagine and also for distinct fluxes in other amino acids. Although Asns overexpression in Oct4, Sox2, Klf4, and Myc cardiomyocytes augmented hallmarks of CMDD, Asns deficiency led to defective regeneration in the neonatal mouse myocardial infarction model, increased cell death of cultured adult cardiomyocytes, and reduced cell cycle in Oct4, Sox2, Klf4, and Myc cardiomyocytes, at least in part through disrupting the mammalian target of rapamycin complex 1 pathway. CONCLUSIONS: We discovered a novel gene Asns as both a molecular marker and an essential mediator, marking a distinct threshold that appears in common for at least 4 models of CMDD, and revealing an Asns/mammalian target of rapamycin complex 1 axis dependency for dedifferentiating cardiomyocytes. Further study will be needed to extrapolate and assess its relevance to other cell state transitions as well as in heart regeneration.


Subject(s)
Aspartate-Ammonia Ligase , Cell Dedifferentiation , Kruppel-Like Factor 4 , Myocytes, Cardiac , Animals , Mice , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Cells, Cultured , Myocytes, Cardiac/metabolism , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/genetics , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/metabolism
11.
Front Public Health ; 12: 1357107, 2024.
Article in English | MEDLINE | ID: mdl-38560437

ABSTRACT

Objective: The current study aimed to assess the relation between multi-dimension poverty, treatment-seeking behavior, and antibiotic misuse among urinary tract infection (UTI) patients. Method: A cross-sectional approach was utilized to recruit patients who had a history of UTI in the previous month from two provinces of Pakistan. The treatment-seeking behavior and antibiotic misuse data were collected on a self-developed questionnaire, whereas the poverty data were collected on a modified multi-dimension poverty index (MPI). Descriptive statistics were applied to summarize the data. The logistic regression analysis was carried out to assess the association of multi-dimension poverty with patient treatment-seeking behavior and antibiotic misuse. Results: A total of 461 participants who had UTI symptoms in the previous month were recruited. Most of the participants in the severely deprived stage treated the UTI (p < 0.001); however, there was a high proportion of the participants who consulted with friends and family for UTI treatment (p < 0.001). The patients with deprivation status (deprived and severely deprived) were less associated with formal consultation. The poorer subgroups were less likely to practice antibiotic course completion. Conclusion: The current study highlighted that poverty plays an important role in antibiotic misuse. Poorer subgroups were associated with informal consultations and the incompletion of the antibiotic course. Further studies are needed to explore the potential role of poverty in treatment-seeking behavior and antibiotic misuse.


Subject(s)
Anti-Bacterial Agents , Urinary Tract Infections , Humans , Anti-Bacterial Agents/therapeutic use , Pakistan/epidemiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/epidemiology , Urinary Tract Infections/diagnosis , Surveys and Questionnaires , Poverty
12.
Environ Toxicol ; 39(6): 3356-3366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38444163

ABSTRACT

Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.


Subject(s)
Antineoplastic Agents , Apoptosis , Melanoma , Signal Transduction , Xanthophylls , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Apoptosis/drug effects , bcl-X Protein/metabolism , Cell Line, Tumor , Janus Kinase 2/metabolism , Melanoma/drug therapy , Melanoma/metabolism , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , Xanthophylls/pharmacology
14.
J Formos Med Assoc ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38438298

ABSTRACT

PURPOSE: Carotid artery web (CaW) is a rare focal fibromuscular dysplasia that can lead to embolic strokes with large vessel occlusion. This condition can be effectively treated with endovascular thrombectomy (EVT). Our study aims to assess the prevalence of CaW among patients with acute ischemic stroke (AIS) who underwent EVT and to compare the clinical characteristics of CaW with other carotid artery pathologies. METHODS: We enrolled consecutive patients with AIS who underwent EVT at a single medical center and two regional teaching hospitals in Taiwan from September 2014 to December 2021. We compared CaW with carotid dissection (CaD) and carotid large artery atherosclerosis (CaLAA) in terms of patient demographics and thrombus histological findings. RESULTS: Of the 576 AIS patients who underwent EVT, four (mean age: 50 years) were diagnosed with CaW, resulting in a prevalence of 0.69%. Among these four patients, three experienced successful reperfusion after EVT and achieved functional independence (defined as a modified Rankin Scale score ≤2) three months post-stroke. Importantly, none of the CaW patients suffered a recurrent stroke within one year. Patients with CaW were younger than those with CaD or CaLAA, and exhibited fewer vascular risk factors. Additionally, CaW was associated with distal occlusion sites. The thrombus composition in CaW patients was similar to that in CaD patients. CONCLUSIONS: In conclusion, CaW is a rare finding among Asian patients with carotid artery disease who undergo for AIS. It is more prevalent in younger patients with a limited number of vascular risk factors.

15.
J Cell Mol Med ; 28(7): e18219, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509743

ABSTRACT

The present research focused on identifying necroptosis-related differentially expressed genes (NRDEGs) in spinal cord injury (SCI) to highlight potential therapeutic and prognostic target genes in clinical SCI. Three SCI-related datasets were downloaded, including GSE151371, GSE5296 and GSE47681. MSigDB and KEGG datasets were searched for necroptosis-related genes (NRGs). Differentially expressed genes (DEGs) and NRGs were intersected to obtain NRDEGs. The MCC algorithm was employed to select the first 10 genes as hub genes. A protein-protein interaction (PPI) network related to NRDEGs was developed utilizing STRING. Several databases were searched to predict interactions between hub genes and miRNAs, transcription factors, potential drugs, and small molecules. Immunoassays were performed to identify DEGs using CIBERSORTx. Additionally, qRT-PCR was carried out to verify NRDEGs in an animal model of SCI. Combined analysis of all datasets identified 15 co-expressed DEGs and NRGs. GO and KEGG pathway analyses highlighted DEGs mostly belonged to pathways associated with necroptosis and apoptosis. Hub gene expression analysis showed high accuracy in SCI diagnosis was associated with the expression of CHMP7 and FADD. A total of two hub genes, i.e. CHMP7, FADD, were considered potential targets for SCI therapy.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Animals , Necroptosis/genetics , Computational Biology , Gene Expression Profiling , MicroRNAs/genetics , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/genetics
16.
Int J Food Microbiol ; 416: 110675, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38479336

ABSTRACT

The aim of this study is evaluating the protein degradation capacity of specific spoilage organisms (SSOs) Pseudomonas psychrophila and Shewanella putrefaciens in fish flesh during chilled storage and revealing the underlying genes by whole-genome sequencing (WGS). Biochemical and physical tests were performed on fish flesh inoculated with P. psychrophila and S. putrefaciens individually, including textural properties, myofibrillar fragmentation index, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles, free amino acid composition, total volatile basic nitrogen (TVB-N), trichloroacetic acid (TCA) soluble peptides, and muscle microstructure. Results showed that P. psychrophila and S. putrefaciens exhibited a strong capacity for decomposing the fish protein, and the deterioration of fish flesh texture was primarily attributed to P. psychrophila. The genes from SSOs associated with the production of proteases were identified by whole genome sequencing and serine protease may be the primary enzyme secreted by SSOs involved in the degradation of fish protein. Therefore, the present study has shed light on the mechanisms of protein degradation induced by SSOs, thereby offering valuable insights for the development of effective quality control strategies.


Subject(s)
Pseudomonas , Shewanella putrefaciens , Animals , Fish Proteins , Proteolysis , Food Microbiology , Fishes , Whole Genome Sequencing
17.
J Colloid Interface Sci ; 665: 144-151, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520931

ABSTRACT

Electrochemiluminescence (ECL) biosensors provide a convenient and high sensitivity method for early disease diagnosis. However, creating luminophore arrays relying on powerful ECL signals remains a daunting task. Porphyrin-centered metal organic frameworks (MOFs) exhibit remarkable potential in ECL sensing applications. In this paper, based on a simple one-pot synthesis method, PCN-222@Ag NPs doped with CeO2 was synthesized to enhance the ECL performance. Due to the strong catalytic ability of CeO2, the ECL signal strength of the new material PCN-222@CeO2@Ag NPs is much higher than that of the PCN-222@Ag NPs and PCN-222. The luminous properties of PCN-222@CeO2@Ag NPs become more intense and stable due to the excellent electronic conductivity of Ag NPs. Based on the fact that CuS@PDA composite can quench the ECL signal of PCN-222@CeO2@Ag NPs, we constructed a novel sandwich ECL immune sensor for the detection of phosphorylated Tau 181 (p-Tau-181) protein. The ECL sensor has a great linear relationship with p-Tau-181 protein concentration, ranging from 1 pg/mL to 100 ng/mL. The detection limit is as low as 0.147 pg/mL. This work provides new ideas for developing sensitive ECL sensors for the p-Tau-181 protein, the marker of Alzheimer's disease.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Luminescent Measurements/methods , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection
18.
Ying Yong Sheng Tai Xue Bao ; 35(1): 212-218, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38511458

ABSTRACT

We investigated the effects and mechanisms of nitrogen additions (0, 1, 2, 4, 8, 16, 24, 32 g N·m-2·a-1) on contents of anion and cation in rhizosphere soil, bulk soil, and mixed rhizosphere and bulk soil in the heavily salinized grassland in the agro-pastoral ecotone of North China. The results showed that pH of rhizosphere, mixed and bulk soils decreased significantly with the increases of nitrogen addition levels. Moreover, pH of three soil types under the 32 g N·m-2·a-1 treatment decreased by 1.2, 0.9, and 0.6, respectively, while pH of rhizosphere soil decreased by 0.44 compared with the bulk soil. Na+ content of rhizosphere, mixed and bulk soils significantly decreased, while the NO3- content significantly increased. The proportion of Na+ content in total soluble salt content in rhizosphere soil decreased by 14% and that in bulk soil decreased by 12% after the 32 g N·m-2·a-1 addition. NO3- content increased by 29% in rhizosphere soil and by 26% in bulk soil. There was significant negative correlation between pH and NO3- content, and significant positive correlation between pH and Na+ content. The total soluble salt content of rhizosphere soil under the 32 g N·m-2·a-1 treatment was significantly reduced by 31.5%. Collectedly, nitrogen deposition could reduce soil pH and total soluble salt content of rhizosphere soil and alleviate saline-alkali stress.


Subject(s)
Rhizosphere , Soil , Soil/chemistry , Grassland , Nitrogen/analysis , Anions , Cations , China , Soil Microbiology
19.
Neural Regen Res ; 19(11): 2499-2512, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38526286

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202419110-00030/figure1/v/2024-03-08T184507Z/r/image-tiff The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury. Ruxolitinib, a JAK-STAT inhibitor, exhibits effectiveness in autoimmune diseases, arthritis, and managing inflammatory cytokine storms. Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma, the exact mechanism by which it enhances functional recovery after spinal cord injury, particularly its effect on astrocytes, remains unclear. To address this gap, we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury. Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury, restored EAAT2 expression, reduced glutamate levels, and alleviated excitatory toxicity. Furthermore, ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1ß, interleukin-6, and tumor necrosis factor-α. Additionally, in glutamate-induced excitotoxicity astrocytes, ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3, thereby reducing glutamate-induced neurotoxicity, calcium influx, oxidative stress, and cell apoptosis, and increasing the complexity of dendritic branching. Collectively, these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes, reduces neurotoxicity, and effectively alleviates inflammatory and immune responses after spinal cord injury, thereby promoting functional recovery after spinal cord injury.

20.
Int J Stroke ; : 17474930241237932, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38415357

ABSTRACT

BACKGROUND: Stroke is the second leading cause of death and the third leading cause of disability in the general population worldwide. However, the changing trend of ischemic stroke burden attributable to various dietary risk factors has not been fully revealed and may contribute to a better understanding of stroke epidemiology. AIMS: Our article aimed to evaluate the temporal trend of diet-related ischemic stroke burden to inform future research and policy-making. METHODS: This analysis was based on the data from the Global Burden of Disease (GBD) Study 2019 (spanning years 1990 to 2019), and we used the joinpoint regression to model temporal trends in diet-related ischemic stroke burden across countries and regions of the world during the study period. Six specific dietary factors known to influence stroke risk, including sodium, red meat, fiber, vegetables, whole grains, and fruits, were evaluated in the GBD study to determine their individual and joint impact on ischemic stroke. The changing trend was primarily measured by the average annual percent change (AAPC). Age-standardized rates (ASRs) of mortality and years lived with disability (YLD) per 100,000 population were used to evaluate disease burden. Finally, the socioeconomic background, which was quantified as sociodemographic index (SDI), and its association with diet-related ischemic stroke burden were also explored with the Pearson correlation coefficient. RESULTS: During the study period, the ischemic stroke ASR of mortality attributable to overall dietary risk decreased by an average of 1.6% per year, while the ASR of YLD decreased by an average of 0.2% per year. High sodium diet was still a key driver of diet-related ischemic stroke, accounting for 8.4% and 11.0% of deaths and disabilities, respectively, in 2019. In addition, we found a negative association between temporal evolution of stroke burden and socioeconomic background (r = -0.6603 for mortality and r = -0.4224 for disability, P < 0.001), which suggested that the developing countries with weak social and economic foundation faced greater challenges from the ongoing burden of diet-related strokes compared with developed countries. CONCLUSIONS: Our study found declining trends and revealed the current status of diet-related ischemic stroke mortality and disability. Interdisciplinary countermeasures involving the development of effective food policies, evidence-based guidelines, and public education are needed in the future to combat this global epidemic. DATA ACCESS STATEMENT: The data used for analysis were open-access and can be obtained from https://vizhub.healthdata.org/gbd-results/.

SELECTION OF CITATIONS
SEARCH DETAIL
...