Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (194)2023 04 21.
Article in English | MEDLINE | ID: mdl-37154542

ABSTRACT

Protozoan parasites of the genus Leishmania cause leishmaniasis, a disease with variable clinical manifestations that affects millions of people worldwide. Infection with L. donovani can result in fatal visceral disease. In Panama, Colombia, and Costa Rica, L. panamensis is responsible for most of the reported cases of cutaneous and mucocutaneous leishmaniasis. Studying a large number of drug candidates with the methodologies available to date is quite difficult, given that they are very laborious for evaluating the activity of compounds against intracellular forms of the parasite or for performing in vivo assays. In this work, we describe the generation of L. panamensis and L. donovani strains with constitutive expression of the gene that encodes for an enhanced green fluorescent protein (eGFP) integrated into the locus that encodes for 18S rRNA (ssu). The gene encoding eGFP was obtained from a commercial vector and amplified by polymerase chain reaction (PCR) to enrich it and add restriction sites for the BglII and KpnI enzymes. The eGFP amplicon was isolated by agarose gel purification, digested with the enzymes BglII and KpnI, and ligated into the Leishmania expression vector pLEXSY-sat2.1 previously digested with the same set of enzymes. The expression vector with the cloned gene was propagated in E. coli, purified, and the presence of the insert was verified by colony PCR. The purified plasmid was linearized and used to transfect L. donovani and L. panamensis parasites. The integration of the gene was verified by PCR. The expression of the eGFP gene was evaluated by flow cytometry. Fluorescent parasites were cloned by limiting dilution, and clones with the highest fluorescence intensity were selected using flow cytometry.


Subject(s)
Leishmania donovani , Leishmania , Leishmaniasis , Humans , Escherichia coli , Leishmania/genetics , Leishmaniasis/parasitology , Green Fluorescent Proteins/genetics , Leishmania donovani/genetics
2.
Genes (Basel) ; 10(11)2019 10 24.
Article in English | MEDLINE | ID: mdl-31652919

ABSTRACT

Due to the absence of transcriptional regulation of gene expression in Leishmania parasites, it is now well accepted that several forms of genomic variations modulate the levels of critical proteins through changes in gene dosage. We previously observed many of these variations in our reference laboratory strain of L. panamensis (PSC-1 strain), including chromosomes with an increased somy and the presence of a putative linear minichromosome derived from chromosome 34. Here, we compared the previously described genomic variations with those occurring after exposure of this strain to increasing concentrations of trivalent antimony (SbIII), as well as those present in two geographically unrelated clinical isolates of L. panamensis. We observed changes in the somy of several chromosomes, amplifications of several chromosomal regions, and copy number variations in gene arrays after exposure to SbIII. Occurrence of amplifications potentially beneficial for the Sb-resistant phenotype appears to be associated with the loss of other forms of amplification, such as the linear minichromosome. In contrast, we found no evidence of changes in somy or amplification of relatively large chromosomal regions in the clinical isolates. In these isolates, the predominant amplifications appear to be those that generate genes arrays; however, in many cases, the amplified arrays have a notably higher number of copies than those from the untreated and Sb-treated laboratory samples.


Subject(s)
Adaptation, Physiological/genetics , Drug Resistance/genetics , Leishmania guyanensis/genetics , Polymorphism, Genetic , Antimony/toxicity , Ecosystem , Genome, Protozoan , Leishmania guyanensis/drug effects , Leishmania guyanensis/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...