Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10670, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724587

ABSTRACT

In this study, we introduce a method for replacing the glass used in existing display electronic materials, lighting, and solar cells by synthesizing a colorless and transparent polyimide (CPI) film with excellent mechanical properties and thermal stability using a combination of new monomers. Poly(amic acid) (PAA) was synthesized using dianhydride 4,4'-biphthalic anhydride (BPA) and diamine 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (AHP). Various contents of organically modified montmorillonite (MMT) and mica were dispersed in PAA solution through solution intercalation, and then CPI hybrid films were prepared through multi-step thermal imidization. The organoclays synthesized to prepare CPI hybrid films were Cloisite 93A (CS-MMT) and hexadimethrine-mica (HM-Mica) based on MMT and mica, respectively. In particular, the diamine monomer AHP containing a -OH group was selected to increase the dispersibility and compatibility between the hydrophilic clays and the CPI matrix. To demonstrate the characteristics of CPI, the overall polymer structure was bent and a strong electron withdrawing -CF3 group was used as a substituent. The thermomechanical properties, morphology of clay dispersion, and optical transparency of the CPI hybrid films were investigated and compared according to the type and content of organoclays. Two types of organoclays, CS-MMT and HM-Mica, were dispersed in a CPI matrix at 1 to 7 wt%, respectively. In electron microscopy, most of the clays were uniformly dispersed in a plate-like shape of less than 20 nm at a certain critical content of the two types of organoclays, but agglomeration of the clays was observed when the content was higher than the critical content. Hybrids using HM-Mica had better thermomechanical properties and hybrids containing CS-MMT had better optical transparency.

2.
RSC Adv ; 14(13): 9062-9071, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38500626

ABSTRACT

Copoly(amic acid) was prepared using the diamine monomer N,N'-[2,2'-bis(trifluoromethyl)-4,4'-biphenylene]bis(4-aminobenzamide) (TFAB) and the anhydride monomers 4,4'-(hexafluoro-isopropylidene)diphthalic anhydride (6FDA) and 4,4'-biphthalic anhydride (BPA). Thereafter, a colorless and transparent copoly(amide imide) (Co-CPAI) film was synthesized through various heat treatments. Co-CPAI hybrid films with a TFAB : 6FDA : BPA molar ratio of 1 : 0.5 : 0.5 were subsequently fabricated using organically modified hectorite (STN) with various contents ranging from 0 to 7 wt% via the solution intercalation method. Finally, the thermomechanical properties, clay dispersion, and optical transmittance of the hybrid films were investigated. The results of wide-angle X-ray diffractometry and transmission electron microscopy demonstrated good dispersion at low clay loadings; however, clay agglomeration was observed above a certain critical STN content. At the critical STN content of 3 wt%, the clay was evenly distributed in the matrix with a nanoscale thickness of approximately 10 nm. Hybrid films containing 3 wt% STN showed excellent thermomechanical properties. Beyond this critical clay content, the physical properties of the films decreased because of the agglomeration of excess clay. Regardless of the clay content, however, the optical properties of the hybrid films remained constant, and their yellow indices, which ranged from 2 to 4, indicated excellent colorless transparency.

3.
ACS Omega ; 9(10): 12195-12203, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38497003

ABSTRACT

Six poly(amic acid)s (PAAs) were synthesized by reacting bis(3-aminophenyl) sulfone with various dianhydride monomers such as pyromellitic dianhydride, 4,4'-biphthalic anhydride, dicyclohexyl-3,4,3',4'-tetracarboxylic dianhydride, 4,4'-oxidiphthalic anhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride. These PAAs were then converted to polyimide (PI) films by thermal imidization at various temperatures. To obtain colorless and transparent PI (CPI), the dianhydride monomer used in this study had an overall bent structure, a structure containing a strong electron-withdrawing -CF3 substituent or an alicyclic ring. In addition, some monomers contained ether or ketone functional groups in their bent structures. The thermomechanical properties, optical transparency, and solubility of CPI films with six different dianhydride monomer structures were investigated, and the correlation between the monomer structure and CPI film properties was clarified. Overall, CPI with an aromatic main chain structure or a linear structure had excellent thermal and mechanical properties. In contrast, CPI with a bent structure containing functional groups or substituents in the main chain exhibited excellent optical transparency and solubility.

4.
Sci Rep ; 14(1): 655, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182758

ABSTRACT

Poly(amic acid) (PAA) was synthesized using dianhydride 4,4'-oxydiphthalic anhydride and diamine 3,3'-dihydroxybenzidine, and polyimide (PI) hybrid films were synthesized by dispersing organo-mica in PAA through a solution intercalation method. Hexadimethrine-mica (HM-Mica), 1,2-dimethylhexadecylimidazolium-mica (MI-Mica), and didodecyldiphenylammonium-mica (DP-Mica), which were obtained via the organic modification of pristine mica, were used as the organo-micas for the PI hybrid films. The organo-mica content was varied from 0.5 to 3.0 wt% with respect to the PI matrix. The thermomechanical properties, morphology, and optical transparency of the resultant PI hybrid films were measured and compared. Dispersion of even small amounts of organo-mica effectively improved the physical properties of the PI hybrids, and maximum enhancements in physical properties were observed at a specific critical content. Electron microscopy of the hybrid films revealed that the organo-mica uniformly dispersed throughout the polymer matrix at the nanoscale level when added at low contents but aggregated in the matrix when added at levels above the critical content. Structural changes in the organo-mica closely influenced the changes in the physical properties of the hybrid films. All PI hybrid films with various organo-mica contents showed similar optical properties, but that prepared with MI-Mica demonstrated the best thermomechanical properties. All synthesized PI hybrid films were transparent regardless of the type and content of organo-mica used.

5.
RSC Adv ; 13(35): 24423-24431, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37583674

ABSTRACT

Polyamic acid (PAA) was synthesized using the diamine monomer N,N'-[2,2'-bis(trifluoromethyl)-4,4'-biphenylene]bis(4-aminobenzamide) and dianhydride monomer 4,4'-oxydiphthalic anhydride. Colorless and transparent poly(amide imide) (CPAI) hybrid films were prepared via multi-step thermal imidization of PAA in which various contents of nano-filler were dispersed. The CPAI hybrid films were prepared by dispersing organoclay STN, which was obtained by organically modifying hectorite, in CPAI by solution intercalation with various contents ranging from 1 to 7 wt%. The thermomechanical properties, morphologies, and optical transparencies of the obtained CPAI hybrid films were investigated based on the dispersed STN content, and the results were compared. Some of the clay in the CPAI hybrid film were agglomerated, which was observed using a transmission electron microscope; however, most clays were well-dispersed, with a nano-size of less than 10 nm. The best thermomechanical properties of the CPAI hybrid film were exhibited with an STN content of 3 wt%, but these properties decreased above the critical content. The coefficients of thermal expansion of all the hybrid films were below 20 ppm per °C regardless of the amount of STN, and the yellow index was 1-2 even when the STN content increased to 7 wt%.

6.
RSC Adv ; 13(24): 16285-16292, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37266490

ABSTRACT

Although aromatic polyimide (PI) exhibits excellent mechanical performance and thermal stability, its dark color limits applicability in optical displays. Therefore, it is desirable to manufacture colorless, transparent PI (CPI) nanocomposite films that retain excellent physical properties. In this study, a solution intercalation method was used to disperse organoclay (Cloisite 25A; CS25A) in poly(amic acid), which was prepared using 4,4'-oxydiphthalic dianhydride and 3,4'-oxydianiline as monomers. This dispersion was then subjected to thermal imidization to synthesize CPI hybrid films. The influence of the CS25A content (0-1.00 wt%) on the thermomechanical properties, optical transmittance, and morphology of the prepared films was investigated. The hybrid film with a CS25A content of 0.50 wt% exhibited the best thermomechanical properties. However, upon further increasing the organoclay content to 1.00 wt%, the physical properties deteriorated. At 0.50 wt% CS25A, some agglomeration occurred but most of the clay was well dispersed as nano-sized particles, as revealed by transmission electron microscopy. In contrast, when the CS25A content exceeded a critical content, most of the clay was agglomerated and the physical properties were reduced. All the obtained CPI hybrid films were colorless and transparent, regardless of the organoclay content.

7.
Sci Rep ; 12(1): 20892, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463262

ABSTRACT

Poly(amic acid) (PAA) is prepared by the reaction of dianhydride 4,4'-biphthalic anhydride and diamine bis[4-(3-aminophenoxy)phenyl]sulfone in N,N'-dimethylacetamide. Two types of fillers were dispersed in the as-synthesized PAA via a solution intercalation method; polyimide (PI) hybrid films were synthesized under various heat treatment conditions. Octylamine (C8) was introduced into graphene sheets (C8-GS) and bentonite (C8-BTN), which were then used as nanofillers in the PI hybrid films. The synthesized nanofillers were used in varying amounts of 0.25-1.00 wt% with respect to the matrix PI. The thermal and morphological properties and optical transparency of the hybrid films were investigated and compared for both C8-GS and C8-BTN at varying nanofiller content. The C8-BTN nanocomposite showed superior thermal properties, and optical transparency, and the filler was well dispersed in the PI matrix compared to the C8-GS nanocomposite. The thermal stability of the hybrid films improved upon the addition of small amounts of the nanofiller. However, beyond a certain critical filler concentration, the thermal stability declined. These results were verified through the dispersion of fillers via transmission electron microscopy.


Subject(s)
Graphite , Nanocomposites , Motion Pictures , Bentonite , Microscopy, Electron, Transmission , Excipients
8.
Sci Rep ; 12(1): 13100, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35908090

ABSTRACT

A series of thermotropic liquid crystal copolyesters (Co-TLCPs) was prepared by melt polymerization using 2,5-diethoxyterephthalic acid (DTA), 2,7-dihydroxynaphthalene (DHN), and p-hydroxybenzoic acid (HBA) monomers, where the HBA content was varied (0-5 mol). At 3 mol HBA, the Co-TLCPs formed nematic mesophases, while below this concentration, the liquid crystalline phase did not appear. The Co-TLCP sample with 3 mol HBA was subjected to melt spinning and heat-treated under various conditions (temperature and time) to investigate their effect on the thermo-mechanical properties and degree of crystallinity. The objective was to determine the critical heat treatment condition that can maximize the properties of the spun Co-TLCP fibers. The microstructure of the heat-treated fiber was investigated using scanning electron microscopy, and the optimal annealing conditions were confirmed based on the morphology of the fiber, which exhibited a skin-core structure owing to the varying heat and pressure conditions applied during spinning.

9.
Polymers (Basel) ; 14(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35746045

ABSTRACT

Poly(amic acid) (PAA) was synthesized from dianhydride 4,4-(4,4-isopropylidenediphenoxy)bis(phthalic anhydride) and diamine bis [4-(3-aminophenoxy) phenyl] sulfone. Colorless and transparent polyimide (CPI) hybrid films were synthesized through thermal imidization after dispersing nanofillers using an intercalation method in a PAA solution. C16-GS and C16-MMT, in which hexadecylamine (C16) was substituted on graphene sheet (GS) and montmorillonite (MMT), respectively, were used as nanofillers to reinforce the CPI hybrid films. These two nanofillers were admixed in varying loadings of 0.25 to 1.00 wt%, and the morphology, thermal properties, and optical transparency of the hybrid films were investigated and compared. The results suggest that the thermal properties of the CPI hybrid films can be improved by adding only a small amount of nanofiller. Transmission electron microscopy results of the CPI hybrid film containing two types of fillers suggested that the fillers were well dispersed in the nano-size in the matrix polymer; however, some of the fillers were observed as agglomerated particles above the critical concentration of 0.50 wt%.

10.
RSC Adv ; 12(15): 8852-8861, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35424866

ABSTRACT

Thermotropic liquid crystalline copolyesters (Co-TLCPs) were synthesized by varying the hydroquinone (HQ) molar ratio from 1-5 with respect to the 2,5-diethoxyterephthalic acid (ETA) monomer. The thermal properties and liquid crystalline mesophases of the synthesized Co-TLCP were investigated. All of the Co-TLCPs synthesized using a HQ molar ratio of 1-5 showed a nematic liquid crystalline phase. Among the Co-TLCPs obtained using HQ in various molar ratios, the most stable physical properties and a clear liquid crystalline phase were obtained when HQ was 4 mol. Among the various Co-TLCPs synthesized, hybrids were prepared using Co-TLCP synthesized with a 1 : 4 = ETA : HQ ratio and organoclay. A 1-10% loading of the organoclay Cloisite 93A was employed per weight of TLCP, and the clay was dispersed using the melt intercalation method. Among the Co-TLCP hybrids, the morphology and thermal properties of the hybrids were investigated according to the changes in the Cloisite 93A in the 1-10 wt% range. In general, the thermal properties were superior when the organoclay loading was 3 wt% and were inferior when the organoclay amount was 5 wt% or more. This result was confirmed by the dispersibility of the clay through transmission electron microscopy.

11.
ACS Omega ; 6(29): 19006-19016, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34337239

ABSTRACT

To improve the optical properties of polyimide (PI) films, we prepared two series of colorless transparent PIs from the dianhydride 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and a diamine, either 2,2-bis(3-aminophenyl)hexafluoropropane (FDN) or 2,2-bis(3-amino-4-hydroxy-phenyl)hexafluoropropane (FDN-OH). Next, colorless PI (CPI) composite films were prepared by dispersing 0-1.00 wt % of organically modified clay (Cloisite 30B) in the intermediate poly(amic acid) (PAA) solution via solution intercalation, followed by imidization. The resultant CPI films had excellent optical transparency, which was achieved by reducing the charge-transfer effects by using a highly electronegative trifluoromethyl group and a kinked monomer structure. The thermal and mechanical properties, morphologies, and optical transparencies of the two as-synthesized CPI hybrid film series were investigated and compared. Electron microscopy observation of the two hybrid series revealed that the clay was well-dispersed with a nanoscale dispersion at all clay contents. However, agglomeration occurred at nanoclay loadings of 1.0 wt %. In addition, the effect of the presence of hydroxyl groups in the PI chain on various physical properties of the two CPI hybrids was also compared.

12.
Sci Rep ; 11(1): 11654, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34079017

ABSTRACT

Thermotropic liquid crystal copolyester (TLCP) was synthesized using a melt polymerization method, with a molar ratio composition of 2,5-diethoxy terephthalic acid (ETA), hydroquinone (HQ), and p-hydroxybenzoic acid (HBA) of 1:1:3. TLCP exhibited nematic liquid crystalline mesophase and maintained nematic textures under all heat treatment conditions applied. The synthesized TLCP was processed into fibers using a capillary rheometer. The liquid crystalline mesophase, thermo-mechanical properties, and morphology of TLCP fibers obtained under various heat treatment conditions were investigated. The thermo-mechanical properties of the heat-treated fibers were improved compared to those of the as-spun fibers. The best results were obtained for TLCP fibers annealed at 230 °C for 9 h. The heat-treated fibers showed a well-developed microfiber morphology compared to the as-spun fibers. In the spun fibers, a skin-core morphology was observed regardless of the heat treatment conditions, and a well-developed fiber morphology better than the core area was observed in the skin area. The diameter of the fiber heat-treated at 230 °C for 9 h was approximately 60-110 nm.

13.
Polymers (Basel) ; 13(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921084

ABSTRACT

4,4'-(4,4'-isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) as a dianhydride and bis(3-aminophenyl) sulfone (APS) and bis(3-amino-4-hydroxyphenyl) sulfone (APS-OH) as diamines were used to synthesize two types of poly(amic acid) (PAA). Varying amounts (0-5.0 wt%) of water-soluble poly(vinyl alcohol) (PVA) were mixed with PAA, and the resulting blend was heat-treated at different stages to obtain the colorless and transparent polyimide (CPI) blend films. The synthesized blended film completely removed water-soluble PVA in water. The possibility as a porous membrane according to the pore size varied according to the amount of PVA was investigated. The dispersibility and compatibility of CPI containing APS-OH monomer were higher than those of the APS monomer. This could be attributed to the hydrogen-bonding interactions between the CPI main chains and PVA. Scanning electron microscopy was conducted to characterize the material. The results revealed that the pore size of the CPI blend film increased as the PVA concentration increased. It was confirmed that uniform pores of µm-size were observed in CPI. The thermal stabilities, morphologies, optical properties, and solubilities of two CPIs obtained using APS and APS-OH monomers were investigated and their properties were compared with each other.

14.
RSC Adv ; 11(48): 30479-30486, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-35480277

ABSTRACT

To fully understand the structure-property relationship of aromatic copoly(amide-imide)s (Co-PAIs) and determine which factors lead to chain rigidity, we prepared two series of Co-PAIs. They were synthesized from two types of amine monomers containing m- and p-isomers and different ratios of 4,4'-(hexafluoroiso-propylidene)diphthalic anhydride (6FDA) and 4,4'-biphthalic anhydride (BPA). m-Substituted and p-substituted N,N'-[2,2'-bis(trifluoromethyl)-4,4'-biphenylene]bis(aminobenzamide) (MPAB) diamine isomers were synthesized from 3- and 4-nitrobenzoyl chloride and 2,2'-bis(trifluoromethyl) benzidine (TFB), respectively. The Co-PAI films were synthesized from poly(amic acid) (PAA), via solution-casting, followed by thermal imidizations. The thermal- and mechanical-properties and optical transparency of the Co-PAI films with different BPA monomer contents were investigated. We also investigated the effects of the different MPAB isomers on the Co-PAI structures. Compared with the m-substituted MPAB Co-PAI films, the p-substituted MPAB Co-PAI films have superior thermo-mechanical properties at the same monomer content. However, the optical transparencies of the m-MPAB Co-PAIs are slightly better than those of the p-MPAB Co-PAIs.

15.
Polymers (Basel) ; 12(7)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698338

ABSTRACT

Herein, poly(amic acid) (PAA) was synthesized using 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as a dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane (6FAm) and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAm-OH) as diamines. Poly(vinyl alcohol) (PVA) at various contents (0-5.0 wt%) was blended with PAA to prepare a composite material. Then, colorless and transparent polyimide (CPI) composite films were prepared by applying various stages of heat treatment using the PAA/PVA blend film as a precursor. These film-type composites were immersed in water to completely dissolve PVA, a water-soluble polymer, and their pore sizes were investigated to determine their potential as a porous membrane. According to the results of scanning electronic microscopy (SEM), as the concentration of PVA increased from 0 to 5.0 wt% in the CPI/PVA composite films, the size of the pores resulting from the dissolution of water-soluble PVA increased. Further, the micrometer-sized pores were uniformly dispersed in the CPI films. The thermal properties, morphology, and optical transparency of the two types of CPI membranes synthesized using 6FAm and 6FAm-OH monomers were examined and compared.

16.
Polymers (Basel) ; 12(1)2020 Jan 12.
Article in English | MEDLINE | ID: mdl-31940948

ABSTRACT

Two series of thermotropic liquid crystal copolymers (TLCPs) with different monomer structures and compositions were synthesized. The copolymers in the first series consisted of 2,5-diethoxyterephthalic acid (ETA), hydroquinone (HQ), and p-hydroxybenzoic acid (HBA), whereas those in the second series contained ETA, 2,7-dihydroxynaphthalene (DHN), and HBA. In both series, the molar ratio of HBA to the other monomers varied from 0 to 5. The thermal properties, degree of crystallinity, and stability of the liquid crystalline mesophase of the copolymers obtained at each HBA ratio were evaluated and compared. Overall, at each HBA content, the DHN-containing copolymer had better thermal properties, but the HQ-containing copolymer exhibited a higher degree of crystallinity and a more stable liquid crystalline mesophase. Furthermore, similar thermal stabilities were observed in both series. The dependence of the molecular dynamics of the TLCPs on the monomer structure was explained using 13C magic-angle spinning/cross-polarization nuclear magnetic resonance spectroscopy. An in-depth investigation of the relaxation time of each carbon revealed that the molecular motions of the TLCPs were greatly influenced by the structures of the monomers present in the main chain. The molecular dynamics of the HQ and DHN monomers in the two series were evaluated and compared.

17.
Polymers (Basel) ; 12(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935847

ABSTRACT

Poly (amic acid) s (PAAs) were synthesized using 4,4'-(hexafluoroisopropyl-idene) diphthalic anhydride (6FDA) and two types of diamines-bis(3-aminophenyl) sulfone (BAS) and bis(3-amino-4-hydroxyphenyl) sulfone (BAS-OH). Two series of transparent polyimide (PI) hybrid films were synthesized by solution intercalation polymerization and thermal imidization using various concentrations (from 0 to 1 wt%) of organically modified clay Cloisite 30B in PAA solution. The thermo-mechanical properties, morphology, and optical transparency of the hybrid films were observed. The transmission electronic microscopy (TEM) results showed that some of the clays were agglomerated, but most of them showed dispersed nanoscale clay. The effects of -OH groups on the properties of the two PI hybrids synthesized using BAS and BAS-OH monomers were compared. The BAS PI hybrids were superior to the BAS-OH PI hybrids in terms of thermal stability and optical transparency, but the BAS-OH PI hybrids exhibited higher glass transition temperatures (Tg) and mechanical properties. Analysis of the thermal properties and tensile strength showed that the highest critical concentration of organoclay was 0.50 wt%.

18.
Polymers (Basel) ; 11(6)2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31167444

ABSTRACT

Two series of thermotropic liquid-crystalline polymers (TLCPs) were synthesized by reacting various dialkoxy terephthalate units with hydroquinone (HQ) and 2,6-naphthalene diol (Naph). The dialkoxy terephthalate moieties used in this study include 2,5-diethoxyterephthalate, 2,5-dibutoxyterephthalate, and 2,5-dihexyloxy-terephthalate. All the TLCPs synthesized in this study formed nematic phases. The molecular motions according to the length of the dialkoxy side groups in the TLCPs were evaluated by 13C cross-polarization/magic angle spinning nuclear magnetic resonance spectroscopy. The thermal properties and molecular dynamics of the TLCPs are found to be affected by the length of the dialkoxy side group and the aromatic diol unit in the main chain. Further, the thermal behaviors, liquid crystalline mesophases, and degree of crystallinity of the two series of TLCPs, i.e., HQ- and Naph-TLCPs, are compared.

19.
Polymers (Basel) ; 11(3)2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30960434

ABSTRACT

The thermal properties, morphologies, oxygen barrier properties, and electrical conductivities of poly(vinyl alcohol) (PVA) hybrid films containing different nanofillers were compared. For the fabrication of the PVA hybrid films, we used reduced graphene oxide (RGO) synthesized from graphite or functionalized hexadecylamine-graphene sheets (HDA-GS) obtained from HDA and GS as a reinforcing filler. The properties of the PVA hybrid films fabricated by intercalating PVA and the fillers for different filler contents ranging from 3 to 10% w/w were then compared. The dispersions of the graphene fillers in the matrix polymers were examined using wide-angle X-ray diffraction and field emission scanning electron microscopy, and the changes in their thermal properties were observed using differential scanning calorimetry and thermogravimetric analysis. Moreover, we measured the oxygen permeability and electrical conductivity of the films to investigate their industrial applications. In addition, all the physical properties of the PVA composites obtained using the two nanofillers were compared.

20.
Polymers (Basel) ; 11(4)2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30960570

ABSTRACT

A series of linear aromatic copolyimides (Co-PIs) were synthesized by reacting 4,4'-biphthalic anhydride (BPA) with various molar contents of 2,2'-bis(trifluoromethyl)benzidine (TFB) and p-xylylenediamine (p-XDA) in N,N'-dimethylacetamide (DMAc). Co-PI films were fabricated by solution casting and thermal imidization with poly(amic acid) (PAA) on glass plates. The thermo-optical properties and gas permeabilities of Co-PI films composed of various molar ratios of p-XDA (0.2⁻1.0 relative to BPA) were investigated. Thermal properties were observed to deteriorate with increasing p-XDA concentration. However, oxygen-transmission rates (O2TRs) and optical transparencies improved with increasing p-XDA concentration. Co-PI hybrids with a 1:0.2:0.8 molar ratio of BPA:TFB:p-XDA and organically modified hectorite (STN) were prepared by the in situ intercalation method. The morphologies and the thermo-optical and gas permeation properties of the hybrids were examined as functions of STN loading (5⁻50 wt %). XRD and TEM revealed substantial increases in clay particle agglomeration in the Co-PI hybrid films as the clay loading was increased from 5 to 50 wt %. The coefficient of thermal expansion (CTE) and the O2TR of a Co-PI hybrid film were observed to improve with increasing STN concentration; however, its optical transparency decreased gradually with increasing STN concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...