Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
BMC Plant Biol ; 24(1): 529, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862926

ABSTRACT

BACKGROUND: The sorghum aphid Melanaphis sacchari (Zehntner) (Homoptera: Aphididae) is an important insect in the late growth phase of sorghum (Sorghum bicolor L.). However, the mechanisms of sorghum response to aphid infestation are unclear. RESULTS: In this paper, the mechanisms of aphid resistance in different types of sorghum varieties were revealed by studying the epidermal cell structure and performing a transcriptome and metabolome association analysis of aphid-resistant and aphid-susceptible varieties. The epidermal cell results showed that the resistance of sorghum to aphids was positively correlated with epidermal cell regularity and negatively correlated with the intercellular space and leaf thickness. Transcriptome and metabolomic analyses showed that differentially expressed genes in the resistant variety HN16 and susceptible variety BTX623 were mainly enriched in the flavonoid biosynthesis pathway and differentially expressed metabolites were mainly related to isoflavonoid biosynthesis and flavonoid biosynthesis. The q-PCR results of key genes were consistent with the transcriptome expression results. Meanwhile, the metabolome test results showed that after aphidinfestation, naringenin and genistein were significantly upregulated in the aphid-resistant variety HN16 and aphid-susceptible variety BTX623 while luteolin was only significantly upregulated in BTX623. These results show that naringenin, genistein, and luteolin play important roles in plant resistance to aphid infestation. The results of exogenous spraying tests showed that a 1‰ concentration of naringenin and genistein is optimal for improving sorghum resistance to aphid feeding. CONCLUSIONS: In summary, the physical properties of the sorghum leaf structure related to aphid resistance were studied to provide a reference for the breeding of aphid-resistant varieties. The flavonoid biosynthesis pathway plays an important role in the response of sorghum aphids and represents an important basis for the biological control of these pests. The results of the spraying experiment provide insights for developing anti-aphid substances in the future.


Subject(s)
Aphids , Metabolome , Sorghum , Transcriptome , Sorghum/genetics , Sorghum/parasitology , Sorghum/metabolism , Aphids/physiology , Animals , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Leaves/genetics
2.
J Anal Methods Chem ; 2022: 5607347, 2022.
Article in English | MEDLINE | ID: mdl-36248054

ABSTRACT

Diosgenin, a steroidal sapogenin, has attracted attention worldwide owing to its pharmacological properties, including antitumor, cardiovascular protective, hypolipidemic, and anti-inflammatory effects. The current diosgenin analysis methods have the disadvantages of long analysis time and low sensitivity. The aim of the present study was to establish an efficient, sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach for pharmacokinetic analysis of diosgenin amorphous solid dispersion (ASD) using tanshinone IIA as an internal standard (IS). Male Sprague-Dawley rats were orally administered diosgenin ASD, and orbital blood samples were collected for analysis. Protein precipitation was performed with methanol-acetonitrile (50 : 50, v/v), and the analytes were separated under isocratic elution by applying acetonitrile and 0.03% formic acid aqueous solution at a ratio of 80 : 20 as the mobile phase. MS with positive electron spray ionization in multiple reaction monitoring modes was applied to determine diosgenin and IS with m/z 415.2⟶271.2 and m/z 295.2⟶277.1, respectively. This approach showed a low limit of quantification of 0.5 ng/ml for diosgenin and could detect this molecule at a concentration range of 0.5 to 1,500 ng/ml (r = 0.99725). The approach was found to have intra- and inter-day precision values ranging from 1.42% to 6.91% and from 1.25% to 3.68%, respectively. Additionally, the method showed an accuracy of -6.54 to 4.71%. The recoveries of diosgenin and tanshinone IIA were 85.81-100.27% and 98.29%, respectively, with negligible matrix effects. Diosgenin and IS were stable under multiple storage conditions. Pharmacokinetic analysis showed that the C max and AUC0⟶t of diosgenin ASD were significantly higher than those of the bulk drug. A sensitive, simple, UPLC-MS/MS analysis approach was established and used for the pharmacokinetic analysis of diosgenin ASD in rats after oral administration.

3.
Drug Des Devel Ther ; 14: 2959-2975, 2020.
Article in English | MEDLINE | ID: mdl-32801637

ABSTRACT

BACKGROUND AND PURPOSE: The traditional Chinese medicine, diosgenin (Dio), has attracted increasing attention because it possesses various therapeutic effects, including anti-tumor, anti-infective and anti-allergic properties. However, the commercial application of Dio is limited by its extremely low aqueous solubility and inferior bioavailability in vivo. Soluplus, a novel excipient, has great solubilization and capacity of crystallization inhibition. The purpose of this study was to prepare Soluplus-mediated Dio amorphous solid dispersions (ASDs) to improve its solubility, bioavailability and stability. METHODS: The crystallization inhibition studies were firstly carried out to select excipients using a solvent shift method. According to solubility and dissolution results, the preparation methods and the ratios of drug to excipient were further optimized. The interaction between Dio and Soluplus was characterized by differential scanning calorimetry (DSC), fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and molecular docking. The pharmacokinetic study was conducted to explore the potential of Dio ASDs for oral administration. Furthermore, the long-term stability of Dio ASDs was also investigated. RESULTS: Soluplus was preliminarily selected from various excipients because of its potential to improve solubility and stability. The optimized ASDs significantly improved the aqueous solubility of Dio due to its amorphization and the molecular interactions between Dio and Soluplus, as evidenced by dissolution test in vitro, DSC, FT-IR spectroscopy, SEM, PXRD and molecular docking technique. Furthermore, pharmacokinetic studies in rats revealed that the bioavailability of Dio from ASDs was improved about 5 times. In addition, Dio ASDs were stable when stored at 40°C and 75% humidity for 6 months. CONCLUSION: These results indicated that Dio ASDs, with its high solubility, high bioavailability and high stability, would open a promising way in pharmaceutical applications.


Subject(s)
Diosgenin/pharmacokinetics , Drug Development , Drugs, Chinese Herbal/pharmacokinetics , Excipients/pharmacokinetics , Polyethylene Glycols/pharmacokinetics , Polyvinyls/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Diosgenin/administration & dosage , Drug Compounding , Drug Stability , Drugs, Chinese Herbal/administration & dosage , Excipients/administration & dosage , Male , Medicine, Chinese Traditional , Molecular Conformation , Molecular Docking Simulation , Polyethylene Glycols/administration & dosage , Polyvinyls/administration & dosage , Rats , Rats, Sprague-Dawley , Solubility , Tandem Mass Spectrometry
4.
AAPS PharmSciTech ; 18(6): 2067-2076, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27995466

ABSTRACT

Diosgenin (DSG), a well-known steroid sapogenin derived from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright, has a variety of bioactivities. However, it shows low oral bioavailability due to poor aqueous solubility and strong hydrophobicity. The present study aimed to develop DSG nanocrystals to increase the dissolution and then improve the oral bioavailability and biopharmaceutical properties of DSG. DSG nanocrystals were prepared by the media milling method using a combination of pluronic F127 and sodium dodecyl sulfate as surface stabilizers. The physicochemical properties of the optimal DSG nanocrystals were characterized using their particle size distribution, morphology, differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy data, and solubility and dissolution test results. Pharmacokinetic studies of the DSG coarse suspension and its nanocrystals were performed in rats. The particle size and polydispersity index of DSG nanocrystals were 229.0 ± 3.7 nm and 0.163 ± 0.064, respectively. DSG retained its original crystalline state during the manufacturing process, and its chemical structure was not compromised by the nanonizing process. The dissolution rate of the freeze-dried DSG nanocrystals was significantly improved in comparison with the original DSG. The pharmacokinetic studies showed that the AUC0-72h and C max of DSG nanocrystals increased markedly (p < 0.01) in comparison with the DSG coarse suspension by about 2.55- and 2.01-fold, respectively. The use of optimized nanocrystals is a good and efficient strategy for oral administration of DSG due to the increased dissolution rate and oral bioavailability of DSG nanocrystals.


Subject(s)
Diosgenin/chemical synthesis , Diosgenin/metabolism , Nanoparticles/chemistry , Nanoparticles/metabolism , Administration, Oral , Animals , Biological Availability , Calorimetry, Differential Scanning/methods , Diosgenin/administration & dosage , Drug Evaluation, Preclinical/methods , Freeze Drying/methods , Male , Nanoparticles/administration & dosage , Particle Size , Rats , Rats, Sprague-Dawley , Solubility , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction
5.
Fitoterapia ; 104: 86-96, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26036751

ABSTRACT

Rhubarb is commonly used as laxatives in Asian countries, of which anthraquinones are the major active ingredients, but there are an increased number of concerns regarding the nephrotoxicity of anthraquinones. In this study, we compared the pharmacokinetic characteristics of rhubarb anthraquinones in rats after orally administered with rhubarb and rhubarb total free anthraquinone oral colon-specific drug delivery granules (RTFA-OCDD-GN), and then explained why these granules could reduce the nephrotoxicity of anthraquinones when they produced purgative efficacy. A sensitive and reliable high performance liquid chromatography (HPLC) method has been fully validated for simultaneous determination of the five active components of rhubarb, and successfully applied to investigate and compare the remarkable differences in pharmacokinetic study of rhubarb anthraquinones after orally administered with rhubarb and RTFA-OCDD-GN. The results showed that, compared with rhubarb group, the AUC, Cmax, t1/2z and Vz/F of aloe-emodin, rhein, emodin and chrysophanol in rats receiving the RTFA-OCDD-GN were significantly decreased, and the Tmax of the four analytes was prolonged. Moreover, the Tmax of rhein, the Cmax of chrysophanol and emodin all have significant differences (P<0.05). Simultaneously, anthraquinone prototype excretion rates in urine and feces of aloe-emodin, rhein, emodin, chrysophanol and physcion were all increased. These findings suggested that oral colon-specific drug delivery technology made anthraquinone aglycone to colon-specific release after oral administration. This allowed anthraquinones to not only play the corresponding purgative effect but also avoid intestinal absorption and promote excretion. And thereby greatly reduced the nephrotoxicity of rhubarb. The result is a new breakthrough in rhubarb toxicity attenuated research.


Subject(s)
Anthraquinones/pharmacokinetics , Cathartics/pharmacokinetics , Drug Delivery Systems , Rheum/chemistry , Administration, Oral , Animals , Chromatography, High Pressure Liquid , Colon , Intestinal Absorption , Kidney/drug effects , Male , Rats , Rats, Sprague-Dawley , Toxicity Tests
6.
Fen Zi Xi Bao Sheng Wu Xue Bao ; 40(5): 309-14, 2007 Oct.
Article in Chinese | MEDLINE | ID: mdl-18254335

ABSTRACT

Tetraploid sorghum (Sorghum bicolor L. Moench) line "sishentian" and Johnsongrass (Sorghum halepense L. Pers) were used to analyze genetic differences between Sorghum and Johnsongrass by SSR (simple sequence repeat) markers and cytogenetic methods. The SSR analyzed results indicated: (1) There were great genetic differences between sorghum and Johnsongrass, According to the different locus distribution, the chromosome linkage groups can be separated into two groups: High differences group and low differences group. (2) Cytogenetic analysis revealed that the parents and their hybrid are irregular tetraploid genetic populations; The chromosome configuration at MI were mainly bivalent and quadrivalents in sorghum, Johnsongrass and their hybrid; there were 17.00, 15.23, 15.83 bivalents and 0.95, 2.15, 1.60 quadrivalents in hybrid, sorghum and Johnsongrass respectively; The results of SSR and cytogenetic analysis demonstrated that the genome of Johnsongrass and Sorghum are homologous in a certain extent. The hybrid can not be steadily hereditary as double diploid.


Subject(s)
Chromosome Mapping , DNA, Plant/analysis , Microsatellite Repeats/genetics , Sorghum/genetics , Genetic Variation , Poaceae/genetics , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...