Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4084, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744847

ABSTRACT

Animals can quickly adapt learned movements to external perturbations, and their existing motor repertoire likely influences their ease of adaptation. Long-term learning causes lasting changes in neural connectivity, which shapes the activity patterns that can be produced during adaptation. Here, we examined how a neural population's existing activity patterns, acquired through de novo learning, affect subsequent adaptation by modeling motor cortical neural population dynamics with recurrent neural networks. We trained networks on different motor repertoires comprising varying numbers of movements, which they acquired following various learning experiences. Networks with multiple movements had more constrained and robust dynamics, which were associated with more defined neural 'structure'-organization in the available population activity patterns. This structure facilitated adaptation, but only when the changes imposed by the perturbation were congruent with the organization of the inputs and the structure in neural activity acquired during de novo learning. These results highlight trade-offs in skill acquisition and demonstrate how different learning experiences can shape the geometrical properties of neural population activity and subsequent adaptation.


Subject(s)
Adaptation, Physiological , Learning , Models, Neurological , Motor Cortex , Learning/physiology , Adaptation, Physiological/physiology , Motor Cortex/physiology , Animals , Neural Networks, Computer , Neurons/physiology , Movement/physiology , Nerve Net/physiology
3.
Nature ; 623(7988): 765-771, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938772

ABSTRACT

Animals of the same species exhibit similar behaviours that are advantageously adapted to their body and environment. These behaviours are shaped at the species level by selection pressures over evolutionary timescales. Yet, it remains unclear how these common behavioural adaptations emerge from the idiosyncratic neural circuitry of each individual. The overall organization of neural circuits is preserved across individuals1 because of their common evolutionarily specified developmental programme2-4. Such organization at the circuit level may constrain neural activity5-8, leading to low-dimensional latent dynamics across the neural population9-11. Accordingly, here we suggested that the shared circuit-level constraints within a species would lead to suitably preserved latent dynamics across individuals. We analysed recordings of neural populations from monkey and mouse motor cortex to demonstrate that neural dynamics in individuals from the same species are surprisingly preserved when they perform similar behaviour. Neural population dynamics were also preserved when animals consciously planned future movements without overt behaviour12 and enabled the decoding of planned and ongoing movement across different individuals. Furthermore, we found that preserved neural dynamics extend beyond cortical regions to the dorsal striatum, an evolutionarily older structure13,14. Finally, we used neural network models to demonstrate that behavioural similarity is necessary but not sufficient for this preservation. We posit that these emergent dynamics result from evolutionary constraints on brain development and thus reflect fundamental properties of the neural basis of behaviour.


Subject(s)
Biological Evolution , Haplorhini , Motor Cortex , Motor Skills , Neurons , Animals , Mice , Haplorhini/physiology , Haplorhini/psychology , Motor Cortex/cytology , Motor Cortex/physiology , Motor Skills/physiology , Movement/physiology , Neural Networks, Computer , Neurons/physiology , Thinking/physiology
4.
bioRxiv ; 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37503015

ABSTRACT

There is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single neuron responses can be well described by relatively few patterns of neural co-modulation. The study of such low-dimensional structure of neural population activity has provided important insights into how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction techniques to estimate these population-wide co-modulation patterns, constraining them to a flat "neural manifold". Here, we hypothesised that since neurons have nonlinear responses and make thousands of distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should be intrinsically nonlinear. Combining neural population recordings from monkey motor cortex, mouse motor cortex, mouse striatum, and human motor cortex, we show that: 1) neural manifolds are intrinsically nonlinear; 2) the degree of their nonlinearity varies across architecturally distinct brain regions; and 3) manifold nonlinearity becomes more evident during complex tasks that require more varied activity patterns. Simulations using recurrent neural network models confirmed the proposed relationship between circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and properly accounting for such nonlinearities will be critical as neuroscientists move towards studying numerous brain regions involved in increasingly complex and naturalistic behaviours.

5.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37293081

ABSTRACT

Animals can quickly adapt learned movements in response to external perturbations. Motor adaptation is likely influenced by an animal's existing movement repertoire, but the nature of this influence is unclear. Long-term learning causes lasting changes in neural connectivity which determine the activity patterns that can be produced. Here, we sought to understand how a neural population's activity repertoire, acquired through long-term learning, affects short-term adaptation by modeling motor cortical neural population dynamics during de novo learning and subsequent adaptation using recurrent neural networks. We trained these networks on different motor repertoires comprising varying numbers of movements. Networks with multiple movements had more constrained and robust dynamics, which were associated with more defined neural 'structure'-organization created by the neural population activity patterns corresponding to each movement. This structure facilitated adaptation, but only when small changes in motor output were required, and when the structure of the network inputs, the neural activity space, and the perturbation were congruent. These results highlight trade-offs in skill acquisition and demonstrate how prior experience and external cues during learning can shape the geometrical properties of neural population activity as well as subsequent adaptation.

SELECTION OF CITATIONS
SEARCH DETAIL
...