Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727927

ABSTRACT

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Subject(s)
Apoptosis , Ascorbic Acid , Cell Survival , Glucose , Hyperglycemia , Oxidative Stress , Reactive Oxygen Species , Retinal Pigment Epithelium , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Hyperglycemia/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/complications , Animals , Reactive Oxygen Species/metabolism , Mice , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Glucose/metabolism , Humans , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/drug therapy , Antioxidants/pharmacology , Antioxidants/metabolism , Mitochondria/metabolism , Mitochondria/drug effects
2.
Chem Biol Interact ; 389: 110856, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38185272

ABSTRACT

Neurodegeneration is a complex process involving various inflammatory mediators and cellular responses. Aldose reductase (AR) is a key enzyme in the polyol pathway, which converts glucose to sorbitol. Beyond its metabolic role, AR has also been found to play a significant role in modulating neuroinflammation. This review aims to provide an overview of the current knowledge regarding the involvement of AR inhibition in attenuating neuroinflammation and complications from diabetic neuropathies. Here, we review the literature regarding AR and neuropathy/neurodegeneration. We discuss the mechanisms underlying the influence of AR inhibitors on ocular inflammation, beta-amyloid-induced neurodegeneration, and optic nerve degeneration. Furthermore, potential therapeutic strategies targeting AR in neurodegeneration are explored. The understanding of AR's role in neurodegeneration may lead to the development of novel therapeutic interventions for other neuroinflammatory disorders.


Subject(s)
Aldehyde Reductase , Diabetic Neuropathies , Humans , Aldehyde Reductase/metabolism , Neuroinflammatory Diseases , Diabetic Neuropathies/drug therapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Inflammation/drug therapy
3.
Nature ; 626(7999): 574-582, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086421

ABSTRACT

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Subject(s)
Astrocytes , Neuroprotection , Adenylyl Cyclases/metabolism , Astrocytes/cytology , Astrocytes/enzymology , Astrocytes/metabolism , Cell Differentiation , Cell Nucleus/metabolism , Cell Survival , Cyclic AMP/metabolism , Cytoplasm/metabolism , Macrophages/metabolism , Macrophages/pathology , Microglia/metabolism , Microglia/pathology , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Optic Nerve Injuries/therapy , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , White Matter/metabolism , White Matter/pathology , Glaucoma/pathology , Glaucoma/therapy
4.
Brain Sci ; 13(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37891793

ABSTRACT

Optic pathway glioma (OPG) is one of the causes of pediatric visual impairment. Unfortunately, there is as yet no cure for such a disease. Understanding the underlying mechanisms and the potential therapeutic strategies may help to delay the progression of OPG and rescue the visual morbidities. Here, we provide an overview of preclinical OPG studies and the regulatory pathways controlling OPG pathophysiology. We next discuss the role of microenvironmental cells (neurons, T cells, and tumor-associated microglia and macrophages) in OPG development. Last, we provide insight into potential therapeutic strategies for treating OPG and promoting axon regeneration.

5.
Mol Aspects Med ; 94: 101219, 2023 12.
Article in English | MEDLINE | ID: mdl-37839232

ABSTRACT

Glaucoma is a neurodegenerative eye disease that causes permanent vision impairment. The main pathological characteristics of glaucoma are retinal ganglion cell (RGC) loss and optic nerve degeneration. Glaucoma can be caused by elevated intraocular pressure (IOP), although some cases are congenital or occur in patients with normal IOP. Current glaucoma treatments rely on medicine and surgery to lower IOP, which only delays disease progression. First-line glaucoma medicines are supported by pharmacotherapy advancements such as Rho kinase inhibitors and innovative drug delivery systems. Glaucoma surgery has shifted to safer minimally invasive (or microinvasive) glaucoma surgery, but further trials are needed to validate long-term efficacy. Further, growing evidence shows that adeno-associated virus gene transduction and stem cell-based RGC replacement therapy hold potential to treat optic nerve fiber degeneration and glaucoma. However, better understanding of the regulatory mechanisms of RGC development is needed to provide insight into RGC differentiation from stem cells and help choose target genes for viral therapy. In this review, we overview current progress in RGC development research, optic nerve fiber regeneration, and human stem cell-derived RGC differentiation and transplantation. We also provide an outlook on perspectives and challenges in the field.


Subject(s)
Glaucoma , Neurodegenerative Diseases , Optic Nerve Diseases , Humans , Animals , Glaucoma/drug therapy , Glaucoma/pathology , Retinal Ganglion Cells/pathology , Optic Nerve Diseases/therapy , Optic Nerve Diseases/pathology , Disease Progression , Neurodegenerative Diseases/pathology , Disease Models, Animal
6.
Life Sci ; 330: 121855, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37419413

ABSTRACT

Brain cancer is a deadly disease with low survival rates for over 70 % of patients. Therefore, there is a critical need to develop better treatment methods and strategies to improve patient outcomes. In this study, we explored the tumor microenvironment and discovered unique characteristics of microglia to interact with astrocytoma cells and promote proliferation and migration of collisions. The conditioned medium from the collisions expressed cell chemoattraction and anti-inflammatory responses. To further understand the interactions between microglia and astrocytoma cells, we used flow sorting and protein analysis found that the protein alterations were related to biogenesis in the astrocytoma cells and metabolic processes in the microglia. Both types of cells were involved in binding and activity in cell-cell interactions. Using STRING to demonstrate the protein cross-interaction between the cells. Furthermore, PHB and RDX interact with oncogenic proteins, which were significantly expressed in patients with Glioblastoma Multiforme (GBM) and low-grade glioma (LGG) according to GEPIA. To study the role of RDX in chemoattraction, the inhibitor-NSC668394 suppressed collision formation and migration in BV2 cells in vitro by down-regulating F-actin. Additionally, it suppressed macrophage infiltration in infiltrating islands in vivo of intracranial tumor-bearing mice. These findings provide evidence for the role of resident cells in mediating tumor development and invasiveness and suggest that potential interacting molecules may be a strategy for controlling tumor growth by regulating the infiltration of tumor-associated microglia in the brain tumor microenvironment.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Glioma , Mice , Animals , Microglia/metabolism , Multiomics , Astrocytoma/metabolism , Astrocytoma/pathology , Glioma/pathology , Glioblastoma/pathology , Brain/metabolism , Brain Neoplasms/pathology , Tumor Microenvironment , Cell Line, Tumor
7.
Sci Rep ; 13(1): 8205, 2023 05 21.
Article in English | MEDLINE | ID: mdl-37211572

ABSTRACT

Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.


Subject(s)
Ciliopathies , Retinal Degeneration , Mice , Humans , Animals , Retinal Pigment Epithelium , Cilia/physiology , Disease Models, Animal , Tumor Suppressor Proteins , Microtubule-Associated Proteins
8.
Curr Issues Mol Biol ; 45(4): 3391-3405, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37185746

ABSTRACT

This study aimed to investigate the regulatory role of Aldo-keto reductase family 1 member B1 (AKR1B1) in glioma cell proliferation through p38 MAPK activation to control Bcl-2/BAX/caspase-3 apoptosis signaling. AKR1B1 expression was quantified in normal human astrocytes, glioblastoma multiforme (GBM) cell lines, and normal tissues by using quantitative real-time polymerase chain reaction. The effects of AKR1B1 overexpression or knockdown and those of AKR1B1-induced p38 MAPK phosphorylation and a p38 MAPK inhibitor (SB203580) on glioma cell proliferation were determined using an MTT assay and Western blot, respectively. Furthermore, the AKR1B1 effect on BAX and Bcl-2 expression was examined in real-time by Western blot. A luminescence detection reagent was also utilized to identify the effect of AKR1B1 on caspase-3/7 activity. The early and late stages of AKR1B1-induced apoptosis were assessed by performing Annexin V-FITC/PI double-staining assays. AKR1B1 expression was significantly downregulated in glioma tissues and GBM cell lines (T98G and 8401). Glioma cell proliferation was inhibited by AKR1B1 overexpression but was slightly increased by AKR1B1 knockdown. Additionally, AKR1B1-induced p38 MAPK phosphorylation and SB203580 reversed AKR1B1's inhibitory effect on glioma cell proliferation. AKR1B1 overexpression also inhibited Bcl-2 expression but increased BAX expression, whereas treatment with SB203580 reversed this phenomenon. Furthermore, AKR1B1 induced caspase-3/7 activity. The induction of early and late apoptosis by AKR1B1 was confirmed using an Annexin V-FITC/PI double-staining assay. In conclusion, AKR1B1 regulated glioma cell proliferation through the involvement of p38 MAPK-induced BAX/Bcl-2/caspase-3 apoptosis signaling. Therefore, AKR1B1 may serve as a new therapeutic target for glioma therapy development.

9.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108458

ABSTRACT

Microglia-associated neuroinflammation is recognized as a critical factor in the pathogenesis of neurodegenerative diseases; however, there is no effective treatment for the blockage of neurodegenerative disease progression. In this study, the effect of nordalbergin, a coumarin isolated from the wood bark of Dalbergia sissoo, on lipopolysaccharide (LPS)-induced inflammatory responses was investigated using murine microglial BV2 cells. Cell viability was assessed using the MTT assay, whereas nitric oxide (NO) production was analyzed using the Griess reagent. Secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) was detected by the ELISA. The expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein kinases (MAPKs) and NLRP3 inflammasome-related proteins was assessed by Western blot. The production of mitochondrial reactive oxygen species (ROS) and intracellular ROS was detected using flow cytometry. Our experimental results indicated that nordalbergin ≤20 µM suppressed NO, IL-6, TNF-α and IL-1ß production; decreased iNOS and COX-2 expression; inhibited MAPKs activation; attenuated NLRP3 inflammasome activation; and reduced both intracellular and mitochondrial ROS production by LPS-stimulated BV2 cells in a dose-dependent manner. These results demonstrate that nordalbergin exhibits anti-inflammatory and anti-oxidative activities through inhibiting MAPK signaling pathway, NLRP3 inflammasome activation and ROS production, suggesting that nordalbergin might have the potential to inhibit neurodegenerative disease progression.


Subject(s)
Lipopolysaccharides , Neurodegenerative Diseases , Mice , Animals , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Microglia/metabolism , Reactive Oxygen Species/metabolism , Neuroinflammatory Diseases , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neurodegenerative Diseases/metabolism , Signal Transduction , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism
10.
Sci Rep ; 13(1): 5592, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37019993

ABSTRACT

As part of the central nervous system (CNS), retinal ganglion cells (RGCs) and their axons are the only neurons in the retina that transmit visual signals from the eye to the brain via the optic nerve (ON). Unfortunately, they do not regenerate upon injury in mammals. In ON trauma, retinal microglia (RMG) become activated, inducing inflammatory responses and resulting in axon degeneration and RGC loss. Since aldose reductase (AR) is an inflammatory response mediator highly expressed in RMG, we investigated if pharmacological inhibition of AR can attenuate ocular inflammation and thereby promote RGC survival and axon regeneration after ON crush (ONC). In vitro, we discovered that Sorbinil, an AR inhibitor, attenuates BV2 microglia activation and migration in the lipopolysaccharide (LPS) and monocyte chemoattractant protein-1 (MCP-1) treatments. In vivo, Sorbinil suppressed ONC-induced Iba1 + microglia/macrophage infiltration in the retina and ON and promoted RGC survival. Moreover, Sorbinil restored RGC function and delayed axon degeneration one week after ONC. RNA sequencing data revealed that Sorbinil protects the retina from ONC-induced degeneration by suppressing inflammatory signaling. In summary, we report the first study demonstrating that AR inhibition transiently protects RGC and axon from degeneration, providing a potential therapeutic strategy for optic neuropathies.


Subject(s)
Optic Atrophy , Optic Nerve Injuries , Animals , Microglia , Axons/physiology , Aldehyde Reductase , Nerve Regeneration , Retina , Optic Nerve Injuries/pathology , Optic Atrophy/pathology , Nerve Degeneration/pathology , Mammals
11.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499422

ABSTRACT

The occurrence of Alzheimer's disease has been associated with the accumulation of beta-amyloid (ß-amyloid) plaques. These plaques activate microglia to secrete inflammatory molecules, which damage neurons in the brain. Thus, understanding the underlying mechanism of microglia activation can provide a therapeutic strategy for alleviating microglia-induced neuroinflammation. The aldose reductase (AR) enzyme catalyzes the reduction of glucose to sorbitol in the polyol pathway. In addition to mediating diabetic complications in hyperglycemic environments, AR also helps regulate inflammation in microglia. However, little is known about the role of AR in ß-amyloid-induced inflammation in microglia and subsequent neuronal death. In this study, we confirmed that AR inhibition attenuates increased ß-amyloid-induced reactive oxygen species and tumor necrosis factor α secretion by suppressing ERK signaling in BV2 cells. In addition, we are the first to report that AR inhibition reduced the phagocytotic capability and cell migration of BV2 cells in response to ß-amyloid. To further investigate the protective role of the AR inhibitor sorbinil in neurons, we co-cultured ß-amyloid-induced microglia with stem cell-induced neurons. sorbinil ameliorated neuronal damage in both cells in the co-culture system. In summary, our findings reveal AR regulation of microglia activation as a novel therapeutic target for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/metabolism , Aldehyde Reductase/metabolism , Alzheimer Disease/metabolism , Cells, Cultured , Microglia/metabolism , Plaque, Amyloid/metabolism , Inflammation/pathology
12.
Stem Cell Reports ; 17(12): 2690-2703, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36368332

ABSTRACT

Retinal ganglion cell (RGC) replacement therapy could restore vision in glaucoma and other optic neuropathies. We developed a rapid protocol for directly induced RGC (iRGC) differentiation from human stem cells, leveraging overexpression of NGN2. Neuronal morphology and neurite growth were observed within 1 week of induction; characteristic RGC-specific gene expression confirmed identity. Calcium imaging demonstrated γ-aminobutyric acid (GABA)-induced excitation characteristic of immature RGCs. Single-cell RNA sequencing showed more similarities between iRGCs and early-stage fetal human RGCs than retinal organoid-derived RGCs. Intravitreally transplanted iRGCs survived and migrated into host retinas independent of prior optic nerve trauma, but iRGCs protected host RGCs from neurodegeneration. These data demonstrate rapid iRGC generation in vitro into an immature cell with high similarity to human fetal RGCs and capacity for retinal integration after transplantation and neuroprotective function after optic nerve injury. The simplicity of this system may benefit translational studies on human RGCs.


Subject(s)
Glaucoma , Optic Nerve Injuries , Humans , Retinal Ganglion Cells , Optic Nerve Injuries/metabolism , Retina , Stem Cells
13.
Sci Rep ; 12(1): 17446, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261683

ABSTRACT

Adult central nervous system (CNS) axons fail to regenerate after injury, and master regulators of the regenerative program remain to be identified. We analyzed the transcriptomes of retinal ganglion cells (RGCs) at 1 and 5 days after optic nerve injury with and without a cocktail of strongly pro-regenerative factors to discover genes that regulate survival and regeneration. We used advanced bioinformatic analysis to identify the top transcriptional regulators of upstream genes and cross-referenced these with the regulators upstream of genes differentially expressed between embryonic RGCs that exhibit robust axon growth vs. postnatal RGCs where this potential has been lost. We established the transcriptional activator Elk-1 as the top regulator of RGC gene expression associated with axon outgrowth in both models. We demonstrate that Elk-1 is necessary and sufficient to promote RGC neuroprotection and regeneration in vivo, and is enhanced by manipulating specific phosphorylation sites. Finally, we co-manipulated Elk-1, PTEN, and REST, another transcription factor discovered in our analysis, and found Elk-1 to be downstream of PTEN and inhibited by REST in the survival and axon regenerative pathway in RGCs. These results uncover the basic mechanisms of regulation of survival and axon growth and reveal a novel, potent therapeutic strategy to promote neuroprotection and regeneration in the adult CNS.


Subject(s)
Optic Nerve Injuries , Retinal Ganglion Cells , Humans , Retinal Ganglion Cells/metabolism , Axons/metabolism , Nerve Regeneration/physiology , Optic Nerve Injuries/genetics , Optic Nerve Injuries/metabolism , Transcription Factors/metabolism
14.
Toxins (Basel) ; 14(7)2022 06 27.
Article in English | MEDLINE | ID: mdl-35878174

ABSTRACT

There are an estimated 5.4 million snakebite cases every year. People with snakebite envenoming suffer from severe complications, or even death. Although some review articles cover several topics of snakebite envenoming, a review of the cases regarding cerebral complications, especially rare syndromes, is lacking. Here, we overview 35 cases of snakebite by front-fanged snakes, including Bothrops, Daboia, Cerastes, Deinagkistrodon, Trimeresurus, and Crotalus in the Viperidae family; Bungarus and Naja in the Elapidae family, and Homoroselaps (rare cases) in the Lamprophiidae family. We also review three rare cases of snakebite by rear-fanged snakes, including Oxybelis and Leptodeira in the Colubridae family. In the cases of viper bites, most patients (17/24) were diagnosed with ischemic stroke and intracranial hemorrhage, leading to six deaths. We then discuss the potential underlying molecular mechanisms that cause these complications. In cases of elapid bites, neural, cardiac, and ophthalmic disorders are the main complications. Due to the small amount of venom injection and the inability to deep bite, all the rear-fanged snakebites did not develop any severe complications. To date, antivenom (AV) is the most effective therapy for snakebite envenoming. In the six cases of viper and elapid bites that did not receive AV, three cases (two by viper and one by elapid) resulted in death. This indicates that AV treatment is the key to survival after a venomous snakebite. Lastly, we also discuss several studies of therapeutic agents against snakebite-envenoming-induced complications, which could be potential adjuvants along with AV treatment. This article organizes the diagnosis of hemotoxic and neurotoxic envenoming, which may help ER doctors determine the treatment for unidentified snakebite.


Subject(s)
Snake Bites , Viperidae , Animals , Antivenins/therapeutic use , Bungarus , Elapidae , Humans , Snake Bites/drug therapy
15.
Cell Biosci ; 12(1): 1, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34980273

ABSTRACT

Oxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.

16.
Neural Regen Res ; 17(3): 477-481, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34380874

ABSTRACT

SRY-related HMG-box (Sox) transcription factors are known to regulate central nervous system development and are involved in several neurological diseases. Post-translational modification of Sox proteins is known to alter their functions in the central nervous system. Among the different types of post-translational modification, small ubiquitin-like modifier (SUMO) modification of Sox proteins has been shown to modify their transcriptional activity. Here, we review the mechanisms of three Sox proteins in neuronal development and disease, along with their transcriptional changes under SUMOylation. Across three species, lysine is the conserved residue for SUMOylation. In Drosophila, SUMOylation of SoxN plays a repressive role in transcriptional activity, which impairs central nervous system development. However, deSUMOylation of SoxE and Sox11 plays neuroprotective roles, which promote neural crest precursor formation in Xenopus and retinal ganglion cell differentiation as well as axon regeneration in the rodent. We further discuss a potential translational therapy by SUMO site modification using AAV gene transduction and Clustered regularly interspaced short palindromic repeats-Cas9 technology. Understanding the underlying mechanisms of Sox SUMOylation, especially in the rodent system, may provide a therapeutic strategy to address issues associated with neuronal development and neurodegeneration.

17.
Nature ; 594(7862): 277-282, 2021 06.
Article in English | MEDLINE | ID: mdl-34040258

ABSTRACT

Neurons have recently emerged as essential cellular constituents of the tumour microenvironment, and their activity has been shown to increase the growth of a diverse number of solid tumours1. Although the role of neurons in tumour progression has previously been demonstrated2, the importance of neuronal activity to tumour initiation is less clear-particularly in the setting of cancer predisposition syndromes. Fifteen per cent of individuals with the neurofibromatosis 1 (NF1) cancer predisposition syndrome (in which tumours arise in close association with nerves) develop low-grade neoplasms of the optic pathway (known as optic pathway gliomas (OPGs)) during early childhood3,4, raising  the possibility that postnatal light-induced activity of the optic nerve drives tumour initiation. Here we use an authenticated mouse model of OPG driven by mutations in the neurofibromatosis 1 tumour suppressor gene (Nf1)5 to demonstrate that stimulation of optic nerve activity increases optic glioma growth, and that decreasing visual experience via light deprivation prevents tumour formation and maintenance. We show that the initiation of Nf1-driven OPGs (Nf1-OPGs) depends on visual experience during a developmental period in which Nf1-mutant mice are susceptible to tumorigenesis. Germline Nf1 mutation in retinal neurons results in aberrantly increased shedding of neuroligin 3 (NLGN3) within the optic nerve in response to retinal neuronal activity. Moreover, genetic Nlgn3 loss or pharmacological inhibition of NLGN3 shedding blocks the formation and progression of Nf1-OPGs. Collectively, our studies establish an obligate role for neuronal activity in the development of some types of brain tumours, elucidate a therapeutic strategy to reduce OPG incidence or mitigate tumour progression, and underscore the role of Nf1mutation-mediated dysregulation of neuronal signalling pathways in mouse models of the NF1 cancer predisposition syndrome.


Subject(s)
Cell Transformation, Neoplastic/genetics , Genes, Neurofibromatosis 1 , Mutation , Neurofibromin 1/genetics , Neurons/metabolism , Optic Nerve Glioma/genetics , Optic Nerve Glioma/pathology , Animals , Astrocytoma/genetics , Astrocytoma/pathology , Cell Adhesion Molecules, Neuronal/deficiency , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Transformation, Neoplastic/radiation effects , Female , Germ-Line Mutation , Humans , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/radiation effects , Optic Nerve/cytology , Optic Nerve/radiation effects , Photic Stimulation , Retina/cytology , Retina/radiation effects
18.
eNeuro ; 8(1)2021.
Article in English | MEDLINE | ID: mdl-33441400

ABSTRACT

The failure of adult CNS neurons to survive and regenerate their axons after injury or in neurodegenerative disease remains a major target for basic and clinical neuroscience. Recent data demonstrated in the adult mouse that exogenous expression of Sry-related high-mobility-box 11 (Sox11) promotes optic nerve regeneration after optic nerve injury but exacerbates the death of a subset of retinal ganglion cells (RGCs), α-RGCs. During development, Sox11 is required for RGC differentiation from retinal progenitor cells (RPCs), and we found that mutation of a single residue to prevent SUMOylation at lysine 91 (K91) increased Sox11 nuclear localization and RGC differentiation in vitro Here, we explored whether this Sox11 manipulation similarly has stronger effects on RGC survival and optic nerve regeneration. In vitro, we found that non-SUMOylatable Sox11K91A leads to RGC death and suppresses axon outgrowth in primary neurons. We furthermore found that Sox11K91A more strongly promotes axon regeneration but also increases RGC death after optic nerve injury in vivo in the adult mouse. RNA sequence (RNA-seq) data showed that Sox11 and Sox11K91A increase the expression of key signaling pathway genes associated with axon growth and regeneration but downregulated Spp1 and Opn4 expression in RGC cultures, consistent with negatively regulating the survival of α-RGCs and ipRGCs. Thus, Sox11 and its SUMOylation site at K91 regulate gene expression, survival and axon growth in RGCs, and may be explored further as potential regenerative therapies for optic neuropathy.


Subject(s)
Neurodegenerative Diseases , Optic Nerve Injuries , Animals , Axons/metabolism , Cell Survival , Mice , Nerve Regeneration , Neurodegenerative Diseases/metabolism , Optic Nerve Injuries/metabolism , Protein Processing, Post-Translational , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism
19.
Toxins (Basel) ; 13(1)2021 01 14.
Article in English | MEDLINE | ID: mdl-33466634

ABSTRACT

Protobothrops mucrosquamatus poses a serious medical threat to humans in Southern and Southeastern Asia. Hemorrhage is one of the conspicuous toxicities related to the pathology of P. mucrosquamatus envenoming. Previous in vitro and in vivo studies showed that a silica-derived reagent, sodium silicate complex (SSC), was able to neutralize hemorrhagic and proteolytic activities induced by pit viper venoms, including Crotalus atrox, Agkistrodoncontortrix contortrix and Agkistrodon piscivorus leucostoma. In this study, we validated that SSC could neutralize enzymatic and toxic effects caused by the venom of P. mucrosquamatus. We found that SSC inhibited the hemolytic and proteolytic activities induced by P. mucrosquamatus venom in vitro. In addition, we demonstrated that SSC could block intradermal hemorrhage caused by P. mucrosquamatus venom in a mouse model. Finally, SSC could neutralize lethal effects of P. mucrosquamatus venom in the mice. Therefore, SSC is a candidate for further development as a potential onsite first-aid treatment for P. mucrosquamatus envenoming.


Subject(s)
Crotalid Venoms/toxicity , Hemolysis/drug effects , Hemorrhage/drug therapy , Silicates/therapeutic use , Snake Bites/drug therapy , Animals , Disease Models, Animal , Hemorrhage/chemically induced , Injections, Intradermal , Male , Mice , Mice, Inbred ICR , Viperidae
20.
Mol Genet Genomic Med ; 9(1): e1566, 2021 01.
Article in English | MEDLINE | ID: mdl-33306870

ABSTRACT

BACKGROUND: Senior-Loken syndrome is a rare genetic disorder that presents with nephronophthisis and retinal degeneration, leading to end-stage renal disease and progressive blindness. The most frequent cause of juvenile nephronophthisis is a mutation in the nephronophthisis type 1 (NPHP1) gene. NPHP1 encodes the protein nephrocystin-1, which functions at the transition zone (TZ) of primary cilia. METHODS: We report a 9-year-old Senior-Loken syndrome boy with NPHP1 deletion, who presents with bilateral vision decrease and cystic renal disease. Renal function deteriorated to require bilateral nephrectomy and renal transplant. We performed immunohistochemistry, H&E staining, and electron microscopy on the renal sample to determine the subcellular distribution of ciliary proteins in the absence of NPHP1. RESULTS: Immunohistochemistry and electron microscopy of the resected kidney showed disorganized cystic structures with loss of cilia in renal tubules. Phosphoinositides have been recently recognized as critical components of the ciliary membrane and immunostaining of kidney sections for phosphoinositide 5-phosphatase, INPP5E, showed loss of staining compared to healthy control. Ophthalmic examination showed decreased electroretinogram consistent with early retinal degeneration. CONCLUSION: The decreased expression of INPP5E specifically in the primary cilium, coupled with disorganized cilia morphology, suggests a novel role of NPHP1 that it is involved in regulating ciliary phosphoinositide composition in the ciliary membrane of renal tubular cells.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Ciliopathies/genetics , Cytoskeletal Proteins/genetics , Kidney Diseases, Cystic/genetics , Leber Congenital Amaurosis/genetics , Optic Atrophies, Hereditary/genetics , Phosphoric Monoester Hydrolases/metabolism , Child , Cilia/metabolism , Ciliopathies/metabolism , Ciliopathies/pathology , Gene Deletion , Humans , Kidney/metabolism , Kidney/pathology , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Leber Congenital Amaurosis/metabolism , Leber Congenital Amaurosis/pathology , Male , Optic Atrophies, Hereditary/metabolism , Optic Atrophies, Hereditary/pathology , Phosphoric Monoester Hydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...