Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Psychiatry Investig ; 15(10): 1000-1006, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30301302

ABSTRACT

OBJECTIVE: Post weanling isolation-reared (IR) rats are featured with depressive phenotype, yet its mechanism is not clearly defined particularly in terms of the involvement of central 5-HT1A receptors. The present study aims to examine the effects of 5HT1A activation on forced swim test (FST) in IR rats following 5-HT depletion. METHODS: Social control (SOC) and IR rats received an intracerebraoventricular (ICV) injection of 5-HT depletion agent, 5,7-DHT. 14 days after the surgery, rats were assessed their performance in FST with or without the challenge with a 5-HT1A agonist, 8-OH-DPAT. Rats were then sacrificed for analyzing their 5-HT tissue levels and the expressions of their 5-HA1A receptors in prefrontal cortex (PFC), hippocampus (HPX), and amygdala (AMY). RESULTS: 5,7-DHT decreased the tissue concentration of 5-HT in both IR and SOC rats. IR rats were more immobile and less sensitive to the lesion-induced immobility, however this effect was reversed by acute challenge of 8-OH-DPAT. 5,7-DHT lesion increased the expression of PFC 5-HT1A receptors. CONCLUSION: The integrity of central 5-HT system is developmentally crucial for the 5-HT1A-relevant depression profile in rats of social isolation.

2.
J Phys Chem B ; 121(17): 4355-4363, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28409932

ABSTRACT

The electron spin resonance (ESR) spectra of spin-labeled proteins are sensitive to dynamics, but discrimination between the various dynamics is often difficult. Here, we report an improvement in ESR spectral sensitivity to local backbone dynamics of a protein by a methodology that performs ESR measurement when the protein is confined in the nanochannels of a mesoporous material. An extensive set of ESR data, which includes the spectra of a nitroxide-based side chain from buried and solvent-exposed sites of a T4 lysozyme (T4L) protein, were obtained over a range of temperatures, 200-300 K, to explore the dynamics of T4L under nanoconfinement. Spectra were simulated by performing theoretical fits to the data using the microscopic ordering with macroscopic disordering model. Two principle dynamic modes, which differ in mobility and ordering, are required to account for the spectra at temperatures >240 K. We show that the mobile one correlates only with the local backbone dynamics of buried sites, whereas the other reflects the difference in local hydration dynamics between the labeling sites in T4L. The assignment of the mobile component is supported by the X-ray crystallography data of T4L. Collectively, this study has demonstrated the validity of such a methodology for improving ESR sensitivity to buried sites in a protein.


Subject(s)
Bacteriophage T4/enzymology , Muramidase/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Models, Molecular , Muramidase/isolation & purification , Muramidase/metabolism , Spin Labels
3.
J Phys Chem B ; 120(10): 2751-60, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26913490

ABSTRACT

Apoptotic BAX protein functions as a critical gateway to mitochondria-mediated apoptosis. A diversity of stimuli has been implicated in initiating BAX activation, but the triggering mechanism remains elusive. Here we study the interaction of BAX with an intrinsically disordered BH3 motif of Bim protein (BimBH3) using ESR techniques. Upon incubation with BAX, BimBH3 binds to BAX at helices 1/6 trigger site to initiate conformational changes of BAX, which in turn promotes the formation of BAX oligomers. The study strategy is twofold: while BAX oligomerization was monitored through spectral changes of spin-labeled BAX, the binding kinetics was studied by observing time-dependent changes of spin-labeled BimBH3. Meanwhile, conformational transition between the unstructured and structured BimBH3 was measured. We show that helical propensity of the BimBH3 is increased upon binding to BAX but is then reduced after being released from the activated BAX; the release is due to the BimBH3-induced conformational change of BAX that is a prerequisite for the oligomer assembling. Intermediate states are identified, offering a key snapshot of the coupled folding and binding process. Our results provide a quantitative mechanistic description of the BAX activation and reveal new insights into the mechanism underlying the interactions between BAX and BH3-mimetic peptide.


Subject(s)
Apoptosis , Bcl-2-Like Protein 11/chemistry , Bcl-2-Like Protein 11/metabolism , Peptides/metabolism , bcl-2-Associated X Protein/metabolism , Kinetics , Models, Molecular , Peptides/chemistry , bcl-2-Associated X Protein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...