Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Radiol Prot ; 38(4): 1441-1453, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30375363

ABSTRACT

In epidemiological investigations of cancer risk from occupational exposure, it is important to obtain an organ-specific dose for each cohort member for accurate risk analysis. To date, dose conversion coefficients, which convert physical dose measurement to organ dose, are only available for individuals with reference body size, which can differentially bias the estimated organ dose depending on the body mass index of cohort members. In the current study, we calculated the organ dose coefficients applicable to adult males and females with various body weights by using the Monte Carlo radiation transport technique combined with a library of body size-dependent hybrid computational phantoms exposed in six idealised irradiation geometries. We adapted the eight adult male phantoms, 175 cm tall with weights of 60, 70, 80, 90, 100, 110, 120 and 130 kg, and the nine adult female phantoms, 165 cm tall with weights of 50, 60, 70, 80, 90, 100, 110, 120 and 130 kg. The radiation transport was simulated using MCNPX 2.7 Monte Carlo code. Phantoms were irradiated by external photon fields in anterior posterior (AP), posterior-anterior, right and left lateral, rotational, and isotropic geometries. The results showed that the 60 kg adult male phantom shows 1.33-, 1.43-, 1.44- and 1.52-fold greater dose coefficients for the lungs, heart, stomach, and liver, respectively, than the 120 kg adult male phantom at 0.1 MeV in AP geometry. We derived exponential correlation between organ dose coefficients and body weight to facilitate calculation of organ dose coefficients for a given weight. The comprehensive organ dose coefficients and exponential regression model can be used to estimate more accurate organ dose for individuals of the two genders with various body weights exposed to external photon radiation.


Subject(s)
Body Weight , Photons , Radiation Dosage , Radiation Exposure/statistics & numerical data , Adult , Female , Humans , Male , Phantoms, Imaging
2.
BMJ Open ; 8(5): e021536, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29764888

ABSTRACT

OBJECTIVE: To assess whether personal medical diagnostic procedures over life, but particularly those associated with exposure in adulthood, were associated with increased thyroid cancer risk. DESIGN: Participants from the US Radiologic Technologists Study, a large, prospective cohort, were followed from the date of first mailed questionnaire survey completed during 1983-1989 to the earliest date of self-reported diagnosis of thyroid cancer or of any other cancer than non-melanoma skin cancer (NMSC) in any of three subsequent questionnaires up to the last in 2012-2014. SETTING: US nationwide, occupational cohort. PARTICIPANTS: US radiologic technologists with exclusion of: those who reported a previous cancer apart from NMSC on the first questionnaire; those who reported a cancer with an unknown date of diagnosis on any of the questionnaires; and those who did not respond to both the first questionnaire and at least one subsequent questionnaire. PRIMARY OUTCOME MEASURE: We used Cox proportional hazards models with age as timescale to compute HRs and 95% CI for thyroid cancer in relation to cumulative 5-year lagged diagnostic thyroid dose. RESULTS: There were 414 self-reported thyroid cancers (n=275 papillary) in a cohort of 76 415 persons. Cumulative thyroid dose was non-significantly positively associated with total (excess relative risk/Gy=2.29 (95% CI -0.91 to 7.01, p=0.19)) and papillary thyroid cancer (excess relative risk/Gy=4.15 (95% CI -0.39, 11.27, p=0.08)) risk. These associations were not modified by age at, or time since, exposure and were independent of occupational exposure. CONCLUSION: Our study provides weak evidence that thyroid dose from diagnostic radiation procedures over the whole of life, in particular associated with exposure in adulthood, influences adult thyroid cancer risk.


Subject(s)
Allied Health Personnel/statistics & numerical data , Neoplasms, Radiation-Induced/epidemiology , Occupational Exposure/adverse effects , Radiation Exposure/adverse effects , Technology, Radiologic , Thyroid Neoplasms/epidemiology , Adult , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Neoplasms, Radiation-Induced/etiology , Proportional Hazards Models , Prospective Studies , Radiation Dosage , Risk Factors , Self Report , Thyroid Neoplasms/etiology , United States/epidemiology , Young Adult
3.
Health Phys ; 113(6): 458-473, 2017 12.
Article in English | MEDLINE | ID: mdl-28968349

ABSTRACT

This study summarizes and compares estimates of radiation absorbed dose to the thyroid gland for typical patients who underwent diagnostic radiology examinations in the years from 1930 to 2010. The authors estimated the thyroid dose for common examinations, including radiography, mammography, dental radiography, fluoroscopy, nuclear medicine, and computed tomography (CT). For the most part, a clear downward trend in thyroid dose over time for each procedure was observed. Historically, the highest thyroid doses came from the nuclear medicine thyroid scans in the 1960s (630 mGy), full-mouth series dental radiography (390 mGy) in the early years of the use of x rays in dentistry (1930s), and the barium swallow (esophagram) fluoroscopic exam also in the 1930s (140 mGy). Thyroid uptake nuclear medicine examinations and pancreatic scans also gave relatively high doses to the thyroid (64 mGy and 21 mGy, respectively, in the 1960s). In the 21st century, the highest thyroid doses still result from nuclear medicine thyroid scans (130 mGy), but high thyroid doses are also associated with chest/abdomen/pelvis CT scans (18 and 19 mGy for males and females, respectively). Thyroid doses from CT scans did not exhibit the same downward trend as observed for other examinations. The largest thyroid doses from conventional radiography came from cervical spine and skull examinations. Thyroid doses from mammography (which began in the 1960s) were generally a fraction of 1 mGy. The highest average doses to the thyroid from mammography were about 0.42 mGy, with modestly larger doses associated with imaging of breasts with large compressed thicknesses. Thyroid doses from dental radiographic procedures have decreased markedly throughout the decades, from an average of 390 mGy for a full-mouth series in the 1930s to an average of 0.31 mGy today. Upper GI series fluoroscopy examinations resulted in up to two orders of magnitude lower thyroid doses than the barium swallow. There are considerable uncertainties associated with the presented doses, particularly for characterizing exposures of individual identified patients. Nonetheless, the tabulations provide the only comprehensive report on the estimation of typical radiation doses to the thyroid gland from medical diagnostic procedures over eight decades (1930-2010). These data can serve as a resource for epidemiologic studies that evaluate the late health effects of radiation exposure associated with diagnostic radiologic examinations.


Subject(s)
Diagnostic Techniques, Radioisotope , Radiation Exposure/adverse effects , Radiology , Thyroid Gland/diagnostic imaging , Thyroid Gland/radiation effects , Female , Humans , Male , Radiation Dosage , Time Factors
4.
J Radiol Prot ; 37(1): 127-146, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28118153

ABSTRACT

Organ and effective dose coefficients have been calculated for the International Commission on Radiological Protection (ICRP) reference pediatric phantoms externally exposed to mono-energetic photon radiation (x- and gamma-rays) from 0.01 to 20 MeV. Calculations used Monte Carlo radiation transport techniques. Organ dose coefficients, i.e., organ absorbed dose per unit air kerma (Gy/Gy), were calculated for 28 organs and tissues including the active marrow (or red bone marrow) for 10 phantoms (newborn, 1 year, 5 year, 10 year, and 15 year old male and female). Radiation exposure was simulated for 33 photon mono-energies (0.01-20 MeV) in six irradiation geometries: antero-posterior (AP), postero-anterior, right lateral, left lateral, rotational, and isotropic. Organ dose coefficients for different ages closely agree in AP geometry as illustrated by a small coefficient of variation (COV) (the ratio of the standard deviation to the mean) of 4.4% for the lungs. The small COVs shown for the effective dose and AP irradiation geometry reflect that most of the radiosensitive organs are located in the front part of the human body. In contrast, we observed differences in organ dose coefficients across the ages of the phantoms for lateral irradiation geometries. We also observed variation in dose coefficients across different irradiation geometries, where the COV ranges from 18% (newborn male) to 38% (15 year old male) across idealised whole body irradiation geometries for the major organs (active marrow, colon, lung, stomach wall, and breast) at the energy of 0.1 MeV. Effective dose coefficients were also derived for applicable situations, e.g., radiation protection or risk projection. Our results are the first comprehensive set of organ and effective dose coefficients applicable to children and adolescents based on the newly adopted ICRP pediatric phantom series. Our tabulated organ and effective dose coefficients for these next-generation phantoms should provide more accurate estimates of organ doses in children than earlier dosimetric models allowed.


Subject(s)
Gamma Rays , Phantoms, Imaging , Radiometry/methods , Adolescent , Child , Child, Preschool , Dose-Response Relationship, Radiation , Female , Humans , Infant , Infant, Newborn , Male , Photons , Radiation Dosage , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...