Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol ; 271(2): 748-771, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010498

ABSTRACT

Epilepsy is a complex and multifaceted neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to its diverse etiology and often-refractory nature. This comprehensive review highlights the pivotal role of AMP-activated protein kinase (AMPK), a key metabolic regulator involved in cellular energy homeostasis, which may be a promising therapeutic target for epilepsy. Current therapeutic strategies such as antiseizure medication (ASMs) can alleviate seizures (up to 70%). However, 30% of epileptic patients may develop refractory epilepsy. Due to the complicated nature of refractory epilepsy, other treatment options such as ketogenic dieting, adjunctive therapy, and in limited cases, surgical interventions are employed. These therapy options are only suitable for a select group of patients and have limitations of their own. Current treatment options for epilepsy need to be improved. Emerging evidence underscores a potential association between impaired AMPK functionality in the brain and the onset of epilepsy, prompting an in-depth examination of AMPK's influence on neural excitability and ion channel regulation, both critical factors implicated in epileptic seizures. AMPK activation through agents such as metformin has shown promising antiepileptic effects in various preclinical and clinical settings. These effects are primarily mediated through the inhibition of the mTOR signaling pathway, activation of the AMPK-PI3K-c-Jun pathway, and stimulation of the PGC-1α pathway. Despite the potential of AMPK-targeted therapies, several aspects warrant further exploration, including the detailed mechanisms of AMPK's role in different brain regions, the impact of AMPK under various conditional circumstances such as neural injury and zinc toxicity, the long-term safety and efficacy of chronic metformin use in epilepsy treatment, and the potential benefits of combination therapy involving AMPK activators. Moreover, the efficacy of AMPK activators in refractory epilepsy remains an open question. This review sets the stage for further research with the aim of enhancing our understanding of the role of AMPK in epilepsy, potentially leading to the development of more effective, AMPK-targeted therapeutic strategies for this challenging and debilitating disorder.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Metformin , Humans , AMP-Activated Protein Kinases/metabolism , Drug Resistant Epilepsy/drug therapy , Metformin/therapeutic use , Epilepsy/drug therapy , Seizures/drug therapy
2.
Mol Psychiatry ; 28(9): 3955-3965, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37798418

ABSTRACT

Diabetic patients receiving the antidiabetic drug metformin have been observed to exhibit a lower prevalence of anxiety disorders, yet the precise mechanism behind this phenomenon is unclear. In our study, we found that anxiety induces a region-specific reduction in AMPK activity in the medial prefrontal cortex (mPFC). Concurrently, transgenic mice with brain-specific AMPK knockout displayed abnormal anxiety-like behaviors. Treatment with metformin or the overexpression of AMPK restored normal AMPK activity in the mPFC and mitigated social stress-induced anxiety-like behaviors. Furthermore, the specific genetic deletion of AMPK in the mPFC not only instigated anxiety in mice but also nullified the anxiolytic effects of metformin. Brain slice recordings revealed that GABAergic excitation and the resulting inhibitory inputs to mPFC pyramidal neurons were selectively diminished in stressed mice. This reduction led to an excitation-inhibition imbalance, which was effectively reversed by metformin treatment or AMPK overexpression. Moreover, the genetic deletion of AMPK in the mPFC resulted in a similar defect in GABAergic inhibitory transmission and a consequent hypo-inhibition of mPFC pyramidal neurons. We also generated a mouse model with AMPK knockout specific to GABAergic neurons. The anxiety-like behaviors in this transgenic mouse demonstrated the unique role of AMPK in the GABAergic system in relation to anxiety. Therefore, our findings suggest that the activation of AMPK in mPFC inhibitory neurons underlies the anxiolytic effects of metformin, highlighting the potential of this primary antidiabetic drug as a therapeutic option for treating anxiety disorders.


Subject(s)
Anti-Anxiety Agents , Metformin , Humans , Mice , Animals , Anti-Anxiety Agents/pharmacology , AMP-Activated Protein Kinases/pharmacology , Metformin/pharmacology , Hypoglycemic Agents/pharmacology , Prefrontal Cortex , GABAergic Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...