Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Phys Chem Chem Phys ; 26(25): 17561-17568, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869486

ABSTRACT

Chromium(III)-doped zinc gallate (CZGO) is one of the representative persistent luminescent phosphors emitting in the near-infrared (NIR) region. The emission wavelength it covers falls in the tissue-transparent window, making CZGO a promising optical probe for various biomedical applications. The PersL mechanism dictates that such a phenomenon is only profound in large crystals, so the preparation of CZGO with sizes small enough for biological applications while maintaining its luminescence remains a challenging task. Recent attempts to use mesoporous silica nanoparticles (MSN) as a template for growing nanosized CZGO have been successful. MSN is also a well-studied drug carrier, and incorporating CZGO in MSN further expands its potential in imaging-guided therapeutics. Despite the interest, it is unclear of how the addition of MSN would affect the luminescence properties of CZGO. In this work, we observed that forming a CZGO@MSN nanocomposite could enhance the luminescence intensity and extend the PersL lifetime of CZGO. X-ray absorption fine structure (XAFS) analysis was conducted to investigate the local structure of Zn2+, and an interaction between Zn2+ in CZGO and the MSN matrix was identified.

2.
ACS Nano ; 18(17): 11474-11486, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38632861

ABSTRACT

Cobalt-nitrogen-carbon (Co-N-C) catalysts with a CoN4 structure exhibit great potential for oxygen reduction reaction (ORR), but the imperfect adsorption energy toward oxygen species greatly limits their reduction efficiency and practical application potential. Here, F-coordinated Co-N-C catalysts with square-pyramidal CoN4-F1 configuration are successfully synthesized using F atoms to regulate the axial coordination of Co centers via hydrothermal and chemical vapor deposition methods. During the synthesis process, the geometry structure of the Co atom converts from six-coordinated Co-F6 to square-pyramidal CoN4-F1 in the coordinatively unsaturated state, which provides an open binding site for the O2. The introduction of axial F atoms into the CoN4 plane alters the local atomic environment around Co, significantly improving the ORR activity and Zn-air batteries performance. In situ spectroscopy proves that CoN4-F1 sites strongly combine with the OOH* intermediate and facilitate the splitting of O-O bond, making OOH* readily decompose into O* and OH* via a dissociative pathway. Theoretical calculations confirm that the axial F atom effectively reduces the electronic density of the Co centers and facilitates the desorption of the OH* intermediate, efficiently accelerating the overall ORR kinetics. This work advances a feasible synthesis mechanism of axial ligands and provides a route to construct efficient high-coordination catalysts.

3.
Nat Commun ; 15(1): 1719, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409205

ABSTRACT

Tuning interfacial electric fields provides a powerful means to control electrocatalyst activity. Importantly, electric fields can modify adsorbate binding energies based on their polarizability and dipole moment, and hence operate independently of scaling relations that fundamentally limit performance. However, implementation of such a strategy remains challenging because typical methods modify the electric field non-uniformly and affects only a minority of active sites. Here we discover that uniformly tunable electric field modulation can be achieved using a model system of single-atom catalysts (SACs). These consist of M-N4 active sites hosted on a series of spherical carbon supports with varying degrees of nanocurvature. Using in-situ Raman spectroscopy with a Stark shift reporter, we demonstrate that a larger nanocurvature induces a stronger electric field. We show that this strategy is effective over a broad range of SAC systems and electrocatalytic reactions. For instance, Ni SACs with optimized nanocurvature achieved a high CO partial current density of ~400 mA cm-2 at >99% Faradaic efficiency for CO2 reduction in acidic media.

4.
Small ; : e2400564, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368264

ABSTRACT

Developing efficient metal-free catalysts to directly synthesize hydrogen peroxide (H2 O2 ) through a 2-electron (2e) oxygen reduction reaction (ORR) is crucial for substituting the traditional energy-intensive anthraquinone process. Here, in-plane topological defects enriched graphene with pentagon-S and pyrrolic-N coordination (SNC) is synthesized via the process of hydrothermal and nitridation. In SNC, pentagon-S and pyrrolic-N originating from thiourea precursor are covalently grafted onto the basal plane of the graphene framework, building unsymmetrical dumbbell-like S─C─N motifs, which effectively modulates atomic and electronic structures of graphene. The SNC catalyst delivers ultrahigh H2 O2 productivity of 8.1, 7.3, and 3.9 mol gcatalyst -1  h-1 in alkaline, neutral, and acidic electrolytes, respectively, together with long-term operational stability in pH-universal electrolytes, outperforming most reported carbon catalysts. Theoretical calculations further unveil that defective S─C─N motifs efficiently optimize the binding strength to OOH* intermediate and substantially diminish the kinetic barrier for reducing O2 to H2 O2 , thereby promoting the intrinsic activity of 2e-ORR.

5.
J Am Chem Soc ; 146(5): 2977-2985, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38284994

ABSTRACT

The recently surged halide-based solid electrolytes (SEs) are great candidates for high-performance all-solid-state batteries (ASSBs), due to their decent ionic conductivity, wide electrochemical stability window, and good compatibility with high-voltage oxide cathodes. In contrast to the crystalline phases in halide SEs, amorphous components are rarely understood but play an important role in Li-ion conduction. Here, we reveal that the presence of amorphous component is common in halide-based SEs that are prepared via mechanochemical method. The fast Li-ion migration is found to be associated with the local chemistry of the amorphous proportion. Taking Zr-based halide SEs as an example, the amorphization process can be regulated by incorporating O, resulting in the formation of corner-sharing Zr-O/Cl polyhedrons. This structural configuration has been confirmed through X-ray absorption spectroscopy, pair distribution function analyses, and Reverse Monte Carlo modeling. The unique structure significantly reduces the energy barriers for Li-ion transport. As a result, an enhanced ionic conductivity of (1.35 ± 0.07) × 10-3 S cm-1 at 25 °C can be achieved for amorphous Li3ZrCl4O1.5. In addition to the improved ionic conductivity, amorphization of Zr-based halide SEs via incorporation of O leads to good mechanical deformability and promising electrochemical performance. These findings provide deep insights into the rational design of desirable halide SEs for high-performance ASSBs.

6.
Angew Chem Int Ed Engl ; 63(12): e202316360, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38243690

ABSTRACT

Halide solid electrolytes (SEs) have attracted significant attention due to their competitive ionic conductivity and good electrochemical stability. Among typical halide SEs (chlorides, bromides, and iodides), substantial efforts have been dedicated to chlorides or bromides, with iodide SEs receiving less attention. Nevertheless, compared with chlorides or bromides, iodides have both a softer Li sublattice and lower reduction limit, which enable iodides to possess potentially high ionic conductivity and intrinsic anti-reduction stability, respectively. Herein, we report a new series of iodide SEs: Lix YI3+x (x=2, 3, 4, or 9). Through synchrotron X-ray/neutron diffraction characterizations and theoretical calculations, we revealed that the Lix YI3+x SEs belong to the high-symmetry cubic structure, and can accommodate abundant vacancies. By manipulating the defects in the iodide structure, balanced Li-ion concentration and generated vacancies enables an optimized ionic conductivity of 1.04 × 10-3  S cm-1 at 25 °C for Li4 YI7 . Additionally, the promising Li-metal compatibility of Li4 YI7 is demonstrated via electrochemical characterizations (particularly all-solid-state Li-S batteries) combined with interface molecular dynamics simulations. Our study on iodide SEs provides deep insights into the relation between high-symmetry halide structures and ionic conduction, which can inspire future efforts to revitalize halide SEs.

7.
Inorg Chem ; 62(32): 13011-13020, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37535952

ABSTRACT

The field of designing artificial metalloproteins has yet to effectively tackle the incorporation of multimetal clusters, which is a key component of natural metalloproteins, such as metallothioneins (MTs) and calmodulin. MT is a physiological, essential, cysteine-rich metalloprotein that binds to a variety of metals but is only known to form metal-thiolate clusters with Cd2+, Zn2+, and Cu+. Bismuth is a xenobiotic metal and a component of metallodrugs used to treat gastric ulcers and cancer, as well as an emerging metal used in industrial practices. Electrospray ionization mass spectrometry, UV-visible spectroscopy, and extended X-ray absorption fine structure spectroscopy were used to probe the Bi3+ binding site structures in apo-MT3 (brain-located MT) at pH 7.4 and 2 and provide the complete set of binding affinities. We discovered the highly cooperative formation of a novel Bi3+ species, Bi2MT3, under physiological conditions, where each Bi3+ ion is coordinated by three cysteinyl thiolates, with one of the thiolates bridging between the two Bi3+ ions. This cluster structure was associated with a strong visible region absorption band, which was disrupted by the addition of Zn2+ and reversibly disrupted by acidification and increased temperature. This is the first reported presence of bridging cysteines for a xenobiotic metal in MT3 and the Bi2MT structure is the first Bi cluster found in a metalloprotein.

8.
Nat Commun ; 14(1): 3780, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355635

ABSTRACT

Solid electrolyte is vital to ensure all-solid-state batteries with improved safety, long cyclability, and feasibility at different temperatures. Herein, we report a new family of amorphous solid electrolytes, xLi2O-MCly (M = Ta or Hf, 0.8 ≤ x ≤ 2, y = 5 or 4). xLi2O-MCly amorphous solid electrolytes can achieve desirable ionic conductivities up to 6.6 × 10-3 S cm-1 at 25 °C, which is one of the highest values among all the reported amorphous solid electrolytes and comparable to those of the popular crystalline ones. The mixed-anion structural models of xLi2O-MCly amorphous SEs are well established and correlated to the ionic conductivities. It is found that the oxygen-jointed anion networks with abundant terminal chlorines in xLi2O-MCly amorphous solid electrolytes play an important role for the fast Li-ion conduction. More importantly, all-solid-state batteries using the amorphous solid electrolytes show excellent electrochemical performance at both 25 °C and -10 °C. Long cycle life (more than 2400 times of charging and discharging) can be achieved for all-solid-state batteries using the xLi2O-TaCl5 amorphous solid electrolyte at 400 mA g-1, demonstrating vast application prospects of the oxychloride amorphous solid electrolytes.


Subject(s)
Body Fluids , Lithium , Electrolytes , Chlorides , Chlorine
9.
Phys Chem Chem Phys ; 25(30): 20308-20319, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37099205

ABSTRACT

In this work, we studied the optical properties of Dy-doped Gd2O3 nanoparticles (NPs) before and after their APTES functionalisation. We obtained luminescent Dy@Gd2O3 NPs (0.5, 1, and 5% mol) using a modified polyol method. Our work describes their detailed structural analysis using FT-IR, XRD, HRTEM, TGA and XAS techniques. The results show that these systems present a crystalline structure with a body-centred cubic cell and particle sizes of 10 nm. The dopant position was inferred as substitutional, through XAS analysis at the M4,5-edges of Gd and Dy and K-edge of O, and in C2 sites, based on photoluminescence studies. There was sensitization of the luminescence by the matrix as shown by the emission increase of the hypersensitive transition (6F9/2 → 6H13/2, 572 nm) and also a broadband appears around 510 nm attributed to defects in Gd2O3. An enhanced emissive lifetime of 398 µs was found for the sample doped at 1%. We functionalised the Dy@Gd2O3 (at 1%) NPs with 3-aminopropiltrietoxisilane (APTES) for further application as a biomarker sensor. We found that these NPs conserved their luminescence after adding the surface agent (avoiding quenching effects) making them potential materials for biosensing.

10.
Nano Lett ; 23(2): 685-693, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36594847

ABSTRACT

While tuning the electronic structure of Pt can thermodynamically alleviate CO poisoning in direct methanol fuel cells, the impact of interactions between intermediates on the reaction pathway is seldom studied. Herein, we contrive a PtBi model catalyst and realize a complete inhibition of the CO pathway and concurrent enhancement of the formate pathway in the alkaline methanol electrooxidation. The key role of Bi is enriching OH adsorbates (OHad) on the catalyst surface. The competitive adsorption of CO adsorbates (COad) and OHad at Pt sites, complementing the thermodynamic contribution from alloying Bi with Pt, switches the intermediate from COad to formate that circumvents CO poisoning. Hence, 8% Bi brings an approximately 6-fold increase in activity compared to pure Pt nanoparticles. This notion can be generalized to modify commercially available Pt/C catalysts by a microwave-assisted method, offering opportunities for the design and practical production of CO-tolerance electrocatalysts in an industrial setting.

11.
J Am Chem Soc ; 145(4): 2183-2194, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36583711

ABSTRACT

The revival of ternary halides Li-M-X (M = Y, In, Zr, etc.; X = F, Cl, Br) as solid-state electrolytes (SSEs) shows promise in realizing practical solid-state batteries due to their direct compatibility toward high-voltage cathodes and favorable room-temperature ionic conductivities. Most of the reported superionic halide SSEs have a structural pattern of [MCl6]x- octahedra and generate a tetrahedron-assisted Li+ ion diffusion pathway. Here, we report a new class of zeolite-like halide frameworks, SmCl3, for example, in which 1-dimensional channels are enclosed by [SmCl9]6- tricapped trigonal prisms to provide a short jumping distance of 2.08 Å between two octahedra for Li+ ion hopping. The fast Li+ diffusion along the channels is verified through ab initio molecular dynamics simulations. Similar to zeolites, the SmCl3 framework can be grafted with halide species to obtain mobile ions without altering the base structure, achieving an ionic conductivity over 10-4 S cm-1 at 30 °C with LiCl as the adsorbent. Moreover, the universality of the interface-bonding behavior and ionic diffusion in a class of framework materials is demonstrated. It is suggested that the ionic conductivity of the MCl3/halide composite (M = La-Gd) is likely in correlation with the ionic conductivity of the grafted halide species, interfacial bonding, and framework composition/dimensions. This work reveals a potential class of halide structures for superionic conductors and opens up a new frontier for constructing zeolite-like frameworks in halide-based materials, which will promote the innovation of superionic conductor design and contribute to a broader selection of halide SSEs.

12.
Mol Oncol ; 17(2): 298-311, 2023 02.
Article in English | MEDLINE | ID: mdl-36426653

ABSTRACT

There is an urgent need to identify biomarkers of early response that can accurately predict the benefit of immune checkpoint inhibitors (ICI). Patients receiving durvalumab/tremelimumab had tumor samples sequenced before treatment (baseline) to identify variants for the design of a personalized circulating tumor (ctDNA) assay. ctDNA was assessed at baseline and at 4 and/or 8 weeks into treatment. Correlations between ctDNA changes to radiographic response and overall survival (OS) were made to assess potential clinical benefit. 35/40 patients (87.5%) had personalized ctDNA assays designed, and 29/35 (82.9%) had plasma available for baseline analysis, representing 16 unique solid tumor histologies. As early as 4 weeks after treatment, decline in ctDNA from baseline predicted improved OS (P = 0.0144; HR = 9.98) and ctDNA changes on treatment-supported and refined radiographic response calls. ctDNA clearance at any time through week 8 identified complete responders by a median lead time of 11.5 months ahead of radiographic imaging. ctDNA response monitoring is emerging as a dynamic, personalized biomarker method that may predict survival outcomes in patients with diverse solid tumor histologies, complementing and sometimes preceding standard-of-care imaging assessments.


Subject(s)
Circulating Tumor DNA , Humans , Circulating Tumor DNA/genetics , Biomarkers, Tumor/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Mutation
13.
Phys Chem Chem Phys ; 24(47): 29034-29042, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36427044

ABSTRACT

Gold nanoclusters (AuNCs) are a unique class of materials that exhibit visible luminescence. Amorphous calcium phosphate (ACP) is a widely used biomaterial for a variety of purposes, such as drug delivery, bone cementing, and implant coatings. In this study, a nanocomposite of AuNCs and ACP is prepared by biomimetic mineralization in a Dulbecco's modified Eagle's medium (DMEM). The strong interaction between AuNCs and Ca2+ ions effectively induces aggregation of AuNCs. The as-formed nanocomposite, AuNCs@ACP, emits significantly enhanced luminescence compared to AuNCs alone. The luminescence enhancement mechanism is investigated using synchrotron X-ray absorption fine structure spectroscopy. In addition, the presence of AuNCs stabilizes ACP and also enhances the biocompatibility of ACP in promoting cell proliferation, and the nanocomposites are promising as nanoprobes for cancer therapy and/or bone tissue engineering.


Subject(s)
Biomimetics , Gold , Calcium Phosphates
14.
Article in English | MEDLINE | ID: mdl-36315848

ABSTRACT

Developing efficient electrocatalysts to accelerate the sluggish conversion of lithium polysulfides (LiPSs) is of paramount importance for improving the performances of lithium-sulfur (Li-S) batteries. However, a consensus has not yet been reached on the in situ evolution of the electrocatalysts as well as the real catalytic active sites. Herein, defective MnV2O6 (D-MVO) is designed as a precatalyst toward LiPSs' adsorption and conversion. We reveal that the introduction of surface V defects can effectively accelerate the in situ sulfurization of D-MVO during the electrochemical cycling process, which acts as the real electrocatalyst for LiPSs' retention and catalysis. The in situ-sulfurized D-MVO demonstrates much higher electrocatalytic activity than the defect-free MVO toward LiPSs' redox conversion. With these merits, the Li-S batteries with D-MVO separators achieve superior long-term cycling performance with a low decay rate of 0.056% per cycle after 1000 cycles at 1C. Even under an elevated sulfur loading of 5.5 mg cm-2, a high areal capacity of 4.21 mAh cm-2 is still retained after 50 cycles at 0.1C. This work deepens the cognition of the dynamic evolution of the electrocatalysts and provides a favorable strategy for designing efficient precatalysts for advanced Li-S batteries using defect engineering.

15.
Phys Chem Chem Phys ; 24(35): 21131-21140, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36039710

ABSTRACT

Near-infrared (NIR)-emitting persistent luminescence (PersL) nanoparticles have attracted great attention as a novel optical probe for bioimaging and biosensing applications. These nanoparticles emit long-lasting luminescence after the removal of the excitation source, which effectively eliminates the interference from tissue autofluorescence. Cr-doped zinc gallate (ZnGa2O4:Cr3+, CZGO) is a representative NIR-emitting PersL material. On the other hand, amorphous calcium phosphate (ACP) is a widely used drug carrier due to its high biocompatibility. In this work, we present a design of an ACP-based drug carrier with PersL properties, by forming a CZGO-ACP composite. The PersL properties of CZGO were preserved by composite formation, while it is found that the Zn2+ could migrate from CZGO to ACP during composite formation, leading to different luminescence mechanisms between pure CZGO and the CZGO-ACP composite. The electronic structure of the composite was analyzed by synchrotron X-ray absorption spectroscopy, and a structure-luminescence correlation was proposed.


Subject(s)
Luminescence , Nanoparticles , Calcium , Drug Carriers , Nanoparticles/chemistry , Phosphates , Zinc , Zinc Compounds
16.
Sci Rep ; 12(1): 8204, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581306

ABSTRACT

Abundant fossil specimens of Scaphechinus mirabilis, now occurring mostly in temperate waters, have been found in the Toukoshan Formation (Pleistocene) in Miaoli County, Taiwan. Environmental changes leading to its extirpation (local extinction) have thus far been elusive. Here, we reconstruct past environmental and oceanic conditions off northwest Taiwan by analyzing clumped isotopes, as well as stable oxygen isotopes, of well-preserved fossil echinoid tests collected from the Toukoshan Formation. Radiocarbon dates suggest that these samples are from Marine Isotope Stage 3 (MIS 3). Paleotemperature estimates based on clumped isotopes indicate that fossil echinoids were living in oceanic conditions that range from 9 to 14 °C on average, comparable with the estimate derived for a modern sample from Mutsu Bay, Japan. Notably, this temperature range is ~ 10 °C colder than today's conditions off northwest Taiwan. The substantially lower temperatures during ~ 30 ka (MIS 3) compared to the modern conditions might be due to the rerouting of surface currents off northwest Taiwan when the sea level was ~ 60 m lower than today, in addition to the cooling caused by a lower atmospheric CO2 level during the Last Glacial Period. Colder waters brought here by the China Coastal Current (CCC) and the existence of shallow subtidal zones termed "Miaoli Bay" (mainly located in the present-day Miaoli county) during MIS 3 plausibly sustained generations of S. mirabilis, yielding tens of thousands of fossil specimens in the well-preserved fossil beds. The likely extirpation driver is the drastic change from a temperate climate to much warmer conditions in the shallow sea during the Pleistocene-Holocene transition.


Subject(s)
Mirabilis , Fossils , Oxygen Isotopes , Taiwan , Temperature
17.
ACS Appl Mater Interfaces ; 14(15): 17570-17577, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35390250

ABSTRACT

Rechargeable aqueous zinc-ion batteries (AZIBs) are close complements to lithium-ion batteries for next-generation grid-scale applications owing to their high specific capacity, low cost, and intrinsic safety. Nevertheless, the viable cathode materials (especially manganese oxides) of AZIBs suffer from poor conductivity and inferior structural stability upon cycling, thereby impeding their practical applications. Herein, a facile synthetic strategy of bead-like manganese oxide coated with carbon nanofibers (MnOx-CNFs) based on electrospinning is reported, which can effectively improve the electron/ion diffusion kinetics and provide robust structural stability. These benefits of MnOx-CNFs are evident in the electrochemical performance metrics, with a long cycling durability (i.e., a capacity retention of 90.6% after 2000 cycles and 71% after 5000 cycles) and an excellent rate capability. Furthermore, the simultaneous insertion of H+/Zn2+ and the Mn redox process at the surface and in the bulk of MnOx-CNFs are clarified in detail. Our present study not only provides a simple avenue for synthesizing high-performance Mn-based cathode materials but also offers unique knowledge on understanding the corresponding electrochemical reaction mechanism for AZIBs.

18.
Small ; 18(8): e2106433, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34898005

ABSTRACT

Electrochemical CO2 reduction to valuable multi-carbon (C2+ ) products is attractive but with poor selectivity and activity due to the low-efficient CC coupling. Herein, a lithium vacancy-tuned Li2 CuO2 with square-planar [CuO4 ] layers is developed via an electrochemical delithiation strategy. Density functional theory calculations reveal that the lithium vacancies (VLi ) lead to a shorter distance between adjacent [CuO4 ] layers and reduce the coordination number of Li+ around each Cu, featuring with a lower energy barrier for COCO coupling than pristine Li2 CuO2 without VLi . With the VLi percentage of ≈1.6%, the Li2- x CuO2 catalyst exhibits a high Faradaic efficiency of 90.6 ± 7.6% for C2+ at -0.85 V versus reversible hydrogen electrode without iR correction, and an outstanding partial current density of -706 ± 32 mA cm-2 . This work suggests an attractive approach to create controllable alkali metal vacancy-tuned Cu catalytic sites toward C2+ products in electrochemical CO2 reduction.

20.
ACS Appl Mater Interfaces ; 12(39): 43665-43673, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32876426

ABSTRACT

Sodium layered transition-metal oxides have attracted great attention for advanced Na-ion batteries (NIBs) because of their rich structural diversity and superior specific capacity provided by not only cation redox reactions but also possible oxygen-related anionic redox reactions. However, they usually undergo severe electrochemical performance fading, especially the voltage retention during the cationic and anionic redox processes. Herein, we design and synthesize a couple of novel sodium lithium magnesium aluminum manganese oxides (Na0.75Li0.2Mg0.05Al0.05Mn0.7O2) with the same Na+ coordination environment but different oxide layer stacking sequences, namely, P2-NLMAMO and P3-NLMAMO. We systematically investigate and compare the voltage decay phenomenon and the cationic/anionic redox processes under different electrochemical cycling windows combined with ex situ hard and soft X-ray absorption spectroscopy techniques. The results clearly indicate that the P2-NLMAMO electrode with a lower extent of Mn redox is prone to deliver a superior capacity retention and rate performance, more importantly, a higher average voltage in contrast to the P3-type counterpart. In addition, negligible change is detected for the average discharge voltage upon extended cycling when increasing the discharge cutoff voltage to 2.5 V for both P2-NLMAMO and P3-NLMAMO. This unique feature work provides an effective strategy for developing high-capacity P-type layered cathodes based on both cationic and anionic redox chemistry under controlled crystal structure arrangement, which could lead to a deeper understanding of the correlation between crystal structure and electrochemical performance for NIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...