Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 612
Filter
1.
EClinicalMedicine ; 73: 102685, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39022796

ABSTRACT

Background: Rosai-Dorfman disease (RDD) is a rare heterogeneous histiocytic disorder lacking standardized first-line treatment. Methods: This single-center, phase 2 prospective study enrolled 13 newly diagnosed and 10 recurrent RDD patients from June 2021 to March 2023 at Peking Union Medical College Hospital (Beijing, China). Lenalidomide 25 mg days 1-21 plus dexamethasone 40 mg days 1, 8, 15, 22 was administered in 28-day cycles, totaling 12 cycles. The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall response rate (ORR) to lenalidomide and dexamethasone (RD) regimen, toxicity, and overall survival (OS) measured from RD start to death or last follow-up. OS and PFS were estimated according to Kaplan-Meier survival analysis and compared with the log-rank test. For OS and OR rate, 95% confidence limits were obtained using the Clopper-Pearson method, with standard methods used for PFS. p < 0.05 was considered statistically significant. The trial was registered with ClinicalTrials.gov (NCT04924647). Findings: The median age was 44 years (IQR 35-54). All patients had extranodal RDD. MAPK pathway alterations occurred in 6/18 (33%). Elevated IL-6 and TNF-α were found in 39% (n = 9) and 70% (n = 16), respectively. All patients received ≥6 cycles (median 12, range 6-12, IQR 10-12). The ORR was 87% (20/23, 95% CI 66%-97%), 30% (n = 7) complete remission, 57% (n = 13) partial remission). Treatment with RD significantly decreased median serum levels of both IL-6 (from 5.9 (IQR 4.2-8.7) to 2.9 (IQR 2.1-5.9) pg/mL, p = 0.031) and TNF-α (from 12.2 (IQR 8.6-17.9) to 8.3 (IQR 6.1-10.5) pg/mL, p = 0.0012). With a median 26 months follow-up (range 6-28, IQR 16-28), 4 patients relapsed and none died. Two-year OS and PFS were 100.0% (95% CI 85%-100%) and 69.0% (95% CI 51%-94%), respectively. No grade 3-4 adverse events or discontinuations due to adverse events occurred. Twelve patients (n = 12, 52%) had grade 1-2 hematological toxicity. Other toxicities included constipation (n = 2, 9%), glucose intolerance (n = 2, 9%), edema (n = 2, 9%), insomnia (n = 1, 4%), and tremor (n = 1, 4%). Interpretation: Lenalidomide and dexamethasone regimen is an effective and safe regimen for newly diagnosed and recurrent RDD. Funding: National Natural Science Foundation of China, Beijing Natural Science Haidian frontier Foundation Funding, and the National High Level Hospital Clinical Research Funding.

2.
J Asian Nat Prod Res ; : 1-8, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963349

ABSTRACT

The preliminary study revealed that the ethyl acetate eluate of Youngia japonica (YJ-E) could inhibit the expression of key proteins of p-p65, p-IκBα, p-IKKα/ß, and p-AKT in LPS stimulated BV2 cell. Further phytochemical study led to the isolation of eight compounds from YJ-E, including one new sesquiterpene lactone. Their structures were elucidated by several spectroscopic data, and comparing the NMR data of known compound. In addition, all of the isolates were evaluated for the anti-inflammatory effect. As a result, compounds 3 and 4 distinctly attenuated the expressions of p-IκBα, p-p65, and p-AKT in LPS stimulated BV2 cell, respectively.

3.
Sci Rep ; 14(1): 16044, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992223

ABSTRACT

With the high yield of many wells represented by Well JT1 in the Maokou Formation, has catalyzed a surge in exploration activities along the platform margin facies of the Maokou Formation in central Sichuan and further showed the significant exploration potential of the Maokou Formation in the northern slope. However, the fracture cave body of the Maokou Formation exhibits a high degree of development, strong longitudinal and horizontal heterogeneity, large formation pressure differences, and drilling events such as gas kicks and lost circulation occur frequently, which seriously affects the efficient implementation of drilling. Understanding the spatial distribution of the three-pressure in the formation can help better deal with and solve the above problems. Therefore, in order to help the safe, high-quality and rapid drilling of the Maokou Formation in the study area, and enhance the efficiency of oil and gas development, this paper explores the research on the prediction method of the three-pressure of jointing well-seismic data based on the geomechanical experimental data and the actual drilling data. In the process of prediction of pore pressure, this study found that the pore pressure and formation velocity in the study area have an exponential relationship. In order to enhance the applicability of the Filippone's method in the study area and improve the prediction accuracy of pore pressure, the linear relationship between pore pressure and formation velocity in the Filippone's method is modified to an exponential relationship, and a pore pressure prediction model suitable for the work area was established. Based on the Mohr-Coulomb criterion and Huang's model, the prediction models of collapse pressure and fracture pressure applicable to the study area were established, respectively. Then, the elastic parameters were obtained through pre-stack inversion, and the three-pressure bodies were calculated based on the elastic parameter bodies. The results indicate that: (1) The three-pressure prediction method of the jointing well-seismic data in this paper can predict the formation's longitudinal and transverse pressure anomaly zones in advance. (2) The Maokou Formation in the study area is characterized by abnormally high pressure, to balance the pressure of the high-ground formation, high-density drilling fluid is necessary. (3) The prediction results of three-pressure in this paper are highly consistent with the actual drilling engineering events, which verifies the reliability of the three-pressure prediction results presented in this study. The results of the study can provide a basis for decision-making in drilling geological design, such as the determination of drilling fluid density, the evaluation of borehole stability and other engineering problems that require support from three-pressure data.

4.
Sensors (Basel) ; 24(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000959

ABSTRACT

Federated learning is an emerging distributed machine learning framework in the Internet of Vehicles (IoV). In IoV, millions of vehicles are willing to train the model to share their knowledge. Maintaining an active state means the participants must update their state to the FL server in a fixed interval and participate in the next round. However, the cost of maintaining an active state is very large when there are a huge number of participating vehicles. In this paper, we propose a distributed client selection scheme to reduce the cost of maintaining the active state for all participants. The clients with the highest evaluation are elected among the neighbors. In the evaluator, four variables are considered, including the sample quantity, available throughput, computational capability, and the quality of the local dataset. We adopt fuzzy logic as the evaluator since the closed-form solution over four variables does not exist. Extensive simulation results show that our proposal approximates the centralized client selection in terms of accuracy and can significantly reduce the communication overhead.

5.
Res Sq ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38947012

ABSTRACT

Inhibition of translation initiation using eIF4A inhibitors like (-)-didesmethylrocaglamide [(-)-DDR] and (-)-rocaglamide [(-)-Roc] is a potential cancer treatment strategy as they simultaneously diminish multiple oncogenic drivers. We showed that human and dog osteosarcoma cells expressed high levels of eIF4A1/2, particularly eIF4A2. Genetic depletion of eIF4A1 and/or 2 slowed osteosarcoma cell growth. To advance preclinical development of eIF4A inhibitors, we demonstrated the importance of (-)-chirality in DDR for growth-inhibitory activity. Bromination of DDR at carbon-5 abolished growth-inhibitory activity, while acetylating DDR at carbon-1 was tolerated. Like DDR and Roc, DDR-acetate increased the γH2A.X levels and induced G2/M arrest and apoptosis. Consistent with translation inhibition, these rocaglates decreased the levels of several mitogenic kinases, the STAT3 transcription factor, and the stress-activated protein kinase p38. However, phosphorylated p38 was greatly enhanced in treated cells, suggesting activation of stress response pathways. RNA sequencing identified RHOB as a top upregulated gene in both DDR- and Roc-treated osteosarcoma cells, but the Rho inhibitor Rhosin did not enhance the growth-inhibitory activity of (-)-DDR or (-)-Roc. Nonetheless, these rocaglates potently suppressed tumor growth in a canine osteosarcoma patient-derived xenograft model. These results suggest that these eIF4A inhibitors can be leveraged to treat both human and dog osteosarcomas.

6.
Angew Chem Int Ed Engl ; : e202408527, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958191

ABSTRACT

Janus heterostructures consisting of multiple jointed components with distinct properties have gained growing interest in the photoredox catalytic field. Herein, we have developed a facile low-temperature method to gain anisotropic one-dimensional Au-tipped CdS (Au-CdS) nanorods (NRs), followed by assembling Ru molecular co-catalyst (RuN5) onto the surface of the NRs. The CdS NRs decorated with plasmonic Au nanoparticles (NPs) and RuN5 complex harness the virtues of metal-semiconductor and inorganic-organic interface, giving directional charge transfer channels, spatially separated reaction sites, and enhanced local electric field distribution. As a result, the Au-CdS-RuN5 can act as an efficient dual-function photocatalyst for simultaneous H2 evolution and valorization of biomass-derived alcohols. Benefiting from the interfacial charge decoupling and selective chemical bond activation, the optimal all-in-one Au-CdS-RuN5 heterostructure shows greatly enhanced photoactivity and selectivity as compared to bare CdS NRs, along with a remarkable apparent quantum yield of 40.2% at 400 nm. The structural evolution and working mechanism of the heterostructures are systematically analyzed based on experimental and computational results.

7.
BMJ ; 385: e077890, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38897625

ABSTRACT

OBJECTIVE: To compare the effectiveness and safety of nab-paclitaxel, cisplatin, and capecitabine (nab-TPC) with gemcitabine and cisplatin as an alternative first line treatment option for recurrent or metastatic nasopharyngeal carcinoma. DESIGN: Phase 3, open label, multicentre, randomised trial. SETTING: Four hospitals located in China between September 2019 and August 2022. PARTICIPANTS: Adults (≥18 years) with recurrent or metastatic nasopharyngeal carcinoma. INTERVENTIONS: Patients were randomised in a 1:1 ratio to treatment with either nab-paclitaxel (200 g/m2 on day 1), cisplatin (60 mg/m2 on day 1), and capecitabine (1000 mg/m2 twice on days 1-14) or gemcitabine (1 g/m2 on days 1 and 8) and cisplatin (80 mg/m2 on day 1). MAIN OUTCOME MEASURES: Progression-free survival was evaluated by the independent review committee as the primary endpoint in the intention-to-treat population. RESULTS: The median follow-up was 15.8 months in the prespecified interim analysis (31 October 2022). As assessed by the independent review committee, the median progression-free survival was 11.3 (95% confidence interval 9.7 to 12.9) months in the nab-TPC cohort compared with 7.7 (6.5 to 9.0) months in the gemcitabine and cisplatin cohort. The hazard ratio was 0.43 (95% confidence interval 0.25 to 0.73; P=0.002). The objective response rate in the nab-TPC cohort was 83% (34/41) versus 63% (25/40) in the gemcitabine and cisplatin cohort (P=0.05), and the duration of response was 10.8 months in the nab-TPC cohort compared with 6.9 months in the gemcitabine and cisplatin cohort (P=0.009). Treatment related grade 3 or 4 adverse events, including leukopenia (4/41 (10%) v 13/40 (33%); P=0.02), neutropenia (6/41 (15%) v 16/40 (40%); P=0.01), and anaemia (1/41 (2%) v 8/40 (20%); P=0.01), were higher in the gemcitabine and cisplatin cohort than in the nab-TPC cohort. No deaths related to treatment occurred in either treatment group. Survival and long term toxicity are still being evaluated with longer follow-up. CONCLUSION: The nab-TPC regimen showed a superior antitumoural efficacy and favourable safety profile compared with gemcitabine and cisplatin for recurrent or metastatic nasopharyngeal carcinoma. Nab-TPC should be considered the standard first line treatment for recurrent or metastatic nasopharyngeal carcinoma. Longer follow-up is needed to confirm the benefits for overall survival. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR1900027112.


Subject(s)
Albumins , Antineoplastic Combined Chemotherapy Protocols , Capecitabine , Cisplatin , Deoxycytidine , Gemcitabine , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Neoplasm Recurrence, Local , Paclitaxel , Humans , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Cisplatin/adverse effects , Male , Middle Aged , Female , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/mortality , Deoxycytidine/analogs & derivatives , Deoxycytidine/administration & dosage , Deoxycytidine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Capecitabine/therapeutic use , Capecitabine/administration & dosage , Adult , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/mortality , Neoplasm Recurrence, Local/drug therapy , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Paclitaxel/adverse effects , Albumins/administration & dosage , Albumins/adverse effects , Albumins/therapeutic use , Aged , Progression-Free Survival , China , Neoplasm Metastasis
8.
J Dermatol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894607

ABSTRACT

Staphylococcus aureus (S. aureus) commonly reside on human skin in residents in long-term care facilities, yet its colonization and impact on the skin of hemodialysis (HD) patients have yet to be studied. The aim of the present study was to investigate the colonization of S. aureus on the skin of pruritic and non-pruritic HD patients, and the influence of S. aureus and S. aureus-secreted α-toxin on skin barrier function-related protein expression. In this study, a higher relative S. aureus count in pruritic HD patients compared to non-pruritic HD patients and healthy subjects were revealed by real-time polymerase chain reaction. S. aureus and α-toxin decreased mRNA and protein expression levels of aryl hydrocarbon receptor (AHR), ovo-like transcriptional repressor 1 (OVOL1), and filaggrin (FLG) in keratinocytes. In addition, anti-alpha-hemolysin (anti-hla) was used as an α-toxin neutralizer, and it successfully abrogated S. aureus-induced AHR, OVOL1, and FLG mRNA and protein expression downregulation. Mechanistically, α-toxin could decrease FLG activity by preventing the recruitment of AHR to the FLG promoter region. In conclusion, pruritic HD patients had higher S. aureus colonization, with S. aureus-secreted α-toxin suppressing FLG expression through the AHR-FLG axis.

10.
Sci Rep ; 14(1): 11704, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778121

ABSTRACT

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Subject(s)
Artemisinins , Cell Proliferation , DNA Damage , ErbB Receptors , GTP Phosphohydrolases , Lung Neoplasms , Membrane Proteins , Signal Transduction , ErbB Receptors/metabolism , Humans , Cell Proliferation/drug effects , Artemisinins/pharmacology , DNA Damage/drug effects , Signal Transduction/drug effects , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , GTP Phosphohydrolases/metabolism , Animals , Apoptosis/drug effects , Molecular Docking Simulation , A549 Cells , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Protein Binding
11.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791423

ABSTRACT

The relationship between psychological stress, altered skin immunity, and autophagy-related genes (ATGs) is currently unclear. Psoriasis is a chronic skin inflammation of unclear etiology that is characterized by persistence and recurrence. Immune dysregulation and emotional disturbances are recognized as significant risk factors. Emerging clinical evidence suggests a possible connection between anxiety disorders, heightened immune system activation, and altered skin immunity, offering a fresh perspective on the initiation of psoriasis. The aim of this study was to explore the potential shared biological mechanisms underlying the comorbidity of psoriasis and anxiety disorders. Psoriasis and anxiety disorders data were obtained from the GEO database. A list of 3254 ATGs was obtained from the public database. Differentially expressed genes (DEGs) were obtained by taking the intersection of DEGs between psoriasis and anxiety disorder samples and the list of ATGs. Five machine learning algorithms used screening hub genes. The ROC curve was performed to evaluate diagnostic performance. Then, GSEA, immune infiltration analysis, and network analysis were carried out. The Seurat and Monocle algorithms were used to depict T-cell evolution. Cellchat was used to infer the signaling pathway between keratinocytes and immune cells. Four key hub genes were identified as diagnostic genes related to psoriasis autophagy. Enrichment analysis showed that these genes are indeed related to T cells, autophagy, and immune regulation, and have good diagnostic efficacy validated. Using single-cell RNA sequencing analysis, we expanded our understanding of key cellular participants, including inflammatory keratinocytes and their interactions with immune cells. We found that the CASP7 gene is involved in the T-cell development process, and correlated with γδ T cells, warranting further investigation. We found that anxiety disorders are related to increased autophagy regulation, immune dysregulation, and inflammatory response, and are reflected in the onset and exacerbation of skin inflammation. The hub gene is involved in the process of immune signaling and immune regulation. The CASP7 gene, which is related with the development and differentiation of T cells, deserves further study. Potential biomarkers between psoriasis and anxiety disorders were identified, which are expected to aid in the prediction of disease diagnosis and the development of personalized treatments.


Subject(s)
Anxiety Disorders , Autophagy , Computational Biology , Machine Learning , Psoriasis , Single-Cell Analysis , Stress, Psychological , Psoriasis/genetics , Psoriasis/immunology , Humans , Autophagy/genetics , Computational Biology/methods , Stress, Psychological/genetics , Stress, Psychological/immunology , Anxiety Disorders/genetics , Gene Regulatory Networks , Gene Expression Profiling , Skin/pathology , Skin/metabolism , Skin/immunology
12.
Heart ; 110(13): 899-907, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38772574

ABSTRACT

OBJECTIVE: To evaluate the heart response of Erdheim-Chester disease (ECD) through continuous follow-up within our large cohort, for which there is a lack of understanding. METHODS: We conducted a retrospective analysis of clinical data from patients with ECD with cardiac involvement diagnosed at our centre between January 2010 and August 2023. We assessed the heart response by integrating pericardial effusion and metabolic responses. RESULTS: A total of 40 patients were included, with a median age of 51.5 years (range: 29-66) and a BRAFV600E mutation rate of 56%. The most common imaging manifestations observed were pericardial effusion (73%), right atrium (70%) and right atrioventricular sulcus infiltration (58%). Among 21 evaluable patients, 18 (86%) achieved a heart response including 5 (24%) complete response (CR) and 13 (62%) partial response (PR). The CR rate of pericardial effusion response was 33%, while the PR rate was 56%. Regarding the cardiac mass response, 33% of patients showed PR. For cardiac metabolic response, 32% and 53% of patients achieved complete and partial metabolic response, respectively. There was a correlation between pericardial effusion response and cardiac metabolic response (r=0.73 (95% CI 0.12 to 0.83), p<0.001). The median follow-up was 50.2 months (range: 1.0-102.8 months). The estimated 5-year overall survival was 78.9%. The median progression-free survival was 59.4 months (95% CI 26.2 to 92.7 months). Patients who received BRAF inhibitors achieved better heart response (p=0.037) regardless of treatment lines. CONCLUSION: We pioneered the evaluation of heart response of ECD considering both pericardial effusion and cardiac metabolic response within our cohort, revealing a correlation between these two indicators. BRAF inhibitors may improve heart response, regardless of the treatment lines.


Subject(s)
Erdheim-Chester Disease , Pericardial Effusion , Humans , Erdheim-Chester Disease/complications , Erdheim-Chester Disease/drug therapy , Erdheim-Chester Disease/diagnosis , Male , Female , Middle Aged , Adult , Retrospective Studies , Aged , Pericardial Effusion/etiology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Treatment Outcome , Mutation
13.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1785-1792, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812190

ABSTRACT

From the perspective of lncRNA MALAT1 regulating cholesterol metabolism in chondrocytes, this paper explores the effect and mechanism of Tougu Xiaotong Capsules(TGXTC) in delaying the degeneration of osteoarthritis. After one week of adaptive feeding, 48(8-week-old) C57BL/6 mice were randomly divided into a blank group(12 mice) and a model group(36 mice) by random number table method. The mice in the model group were anesthetized by inhalation of 5% isoflurane, and the OA model was induced by Hulth method. The experiment randomly divided the mice into a model group(12 mice), a drug-positive group(taururso-deoxycholic acid)(12 mice), and a TGXTC group(12 mice). The drug-positive group was given 500 mg·kg~(-1) taurodeoxycholic acid by intragastric administration. TGXTC group was given TGXTC 368 mg·kg~(-1) by gavage. The blank group and model group were given the same amount of normal saline for four weeks. After the intervention, the mice in each group were killed under anesthesia, and the knee cartilage tissue was separated and collected. The morphologic changes of knee cartilage were observed. The level of lncRNA MALAT1 in the cartilage tissue was detected by real-time PCR. The protein expressions of ABCA1, ApoA1, LXRß, CHOP, and caspase-3 in mouse articular cartilage were detected by Western blot. Lentivirus-coated plasmid was used to transfect mouse chondrocytes with sh-MALAT1. The gene levels of lncRNA MALAT1 in mouse chondrocytes transfected with sh-MALAT1 were detected by real-time PCR. Western blot was used to detect the effect of TGXTC on the protein content of ABCA1, ApoA1, LXRß, CHOP, and caspase-3 in thapsigargin(TG)-induced mouse chondrocytes after lncRNA MALAT1 knockdown. Flow cytometry was used to detect the effect of TGXTC on apoptosis of TG-induced mouse chondrocytes after lncRNA MALAT1 knockdown. The results of HE and saffranine O staining showed that compared with the model group, the structure of the cartilage layer was basically intact; the damage degree of joint structure was significantly improved, and the cartilage matrix was significantly enhanced by saffranine O staining in the TGXTC group and drug-positive group. Compared with the model group, the lncRNA MALAT1 level was significantly decreased in the TGXTC group and drug-positive group. Compared with the model group, the protein content of ABCA1, ApoA1, and LXRß was significantly increased, while that of CHOP and caspase-3 in the TGXTC group and drug-positive group significantly decreased. Compared with the TG group, the lncRNA MALAT1 level in the TG+sh-MALAT1 group was decreased. The lncRNA MALAT1 level in the TG+sh-MA-LAT1+TGXTC group was increased compared with the TG+TGXTC group. Western blot results showed that compared with the model group, protein expressions of ABCA1, ApoA1, LXRß, CHOP, and caspase-3 in the TGXTC group were significantly decreased, after lncRNA MALAT1 knockdown, the regulation and apoptosis of ABCA1, ApoA1, LXRß, CHOP, and caspase-3 in TG-induced mouse chondrocytes were weakened by TGXTC. TGXTC can improve the disorder of cholesterol metabolism in OA chondrocytes and delay OA degeneration, which is closely related to the regulation of lncRNA MALAT1.


Subject(s)
Cholesterol , Chondrocytes , Drugs, Chinese Herbal , Mice, Inbred C57BL , Osteoarthritis , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chondrocytes/metabolism , Chondrocytes/drug effects , Mice , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/drug therapy , Cholesterol/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Male , Humans , Capsules
14.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2188-2196, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812234

ABSTRACT

This study aims to investigate the protective effect of salidroside(SAL) on renal damage in diabetic nephropathy(DN) mice based on the receptor for advanced glycation end products/janus activated kinase 1/signal transduction and activator of transcription 3(RAGE/JAK1/STAT3) signaling pathway. The mouse DN model was established by high-fat/high-sucrose diets combined with intraperitoneal injection of streptozocin(STZ). Mice were randomly divided into normal group, model group, low-dose SAL group(20 mg·kg~(-1)), high-dose SAL group(100 mg·kg~(-1)), and metformin group(140 mg·kg~(-1)), with 12 mice in each group. After establishing the DN model, mice were given drugs or solvent intragastrically, once a day for consecutive 10 weeks. Body weight, daily water intake, and fasting blood glucose(FBG) were measured every two weeks. After the last dose, the glucose tolerance test was performed, and the samples of 24-hour urine, serum, and kidney tissue were collected. The levels of 24 hours urinary total protein(24 h-UTP), serum creatinine(Scr), blood urea nitrogen(BUN), triglyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol(LDL-C), and high density lipoprotein cholesterol(HDL-C) were detected by biochemical tests. Periodic acid-schiff(PAS) staining was used to observe the pathological changes in the kidney tissue. The protein expressions of α-smooth muscle actin(α-SMA), vimentin, and advanced glycation end products(AGEs) in kidneys were detected by immunohistochemical staining. The activities of superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase(GSH-PX), and the level of malondialdehyde(MDA) in kidneys were detected by using a corresponding detection kit. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of AGEs, carboxymethyllysine(CML), and carboxyethyllysine(CEL) in serum. The protein expressions of RAGE and the phosphorylation level of JAK1 and STAT3 in kidneys were detected by Western blot. Compared with the normal group, the levels of FBG, the area under the curve of glucose(AUCG), water intake, kidney index, 24 h-UTP, tubular injury score, extracellular matrix deposition ratio of the renal glomerulus, the serum levels of Scr, BUN, TG, LDL-C, AGEs, CEL, and CML, the level of MDA, the protein expressions of α-SMA, vimentin, AGEs, and RAGE, and the phosphorylation level of JAK1 and STAT3 in kidney tissue were increased significantly(P<0.01), while the level of HDL-C in serum and the activity of SOD, CAT, and GSH-PX in kidney tissue were decreased significantly(P<0.01). Compared with the model group, the above indexes of the high-dose SAL group were reversed significantly(P<0.05 or P<0.01). In conclusion, this study suggests that SAL can alleviate oxidative stress and renal fibrosis by inhibiting the activation of AGEs-mediated RAGE/JAK1/STAT3 signaling axis, thus playing a potential role in the treatment of DN.


Subject(s)
Diabetic Nephropathies , Glucosides , Janus Kinase 1 , Kidney , Phenols , Receptor for Advanced Glycation End Products , STAT3 Transcription Factor , Signal Transduction , Animals , Mice , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Glucosides/pharmacology , Glucosides/administration & dosage , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Signal Transduction/drug effects , Male , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Phenols/pharmacology , Janus Kinase 1/metabolism , Janus Kinase 1/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Protective Agents/pharmacology , Protective Agents/administration & dosage , Humans , Mice, Inbred C57BL , Blood Glucose/metabolism , Blood Glucose/drug effects
15.
Biochem Pharmacol ; 224: 116242, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679209

ABSTRACT

Although the anticancer activity of ONC212 has been reported, the precise mechanism underlying its apoptotic effects remains unclear. In this study, we investigated the apoptotic mechanism of ONC212 in acute myeloid leukemia (AML) cells. ONC212 induces apoptosis, MCL1 downregulation, and mitochondrial depolarization in AML U937 cells. Ectopic MCL1 expression alleviates mitochondria-mediated apoptosis in ONC212-treated U937 cells. ONC212 triggers AKT phosphorylation, inducing NOX4-dependent ROS production and promoting HuR transcription. HuR-mediated ATF4 mRNA stabilization stimulates NOXA and SLC35F2 expression; ONC212-induced upregulation of NOXA leads to MCL1 degradation. The synergistic effect of ONC212 on YM155 cytotoxicity was dependent on increased SLC35F2 expression. In addition, YM155 feedback facilitated the activation of the ONC212-induced signaling pathway. A similar mechanism explains ONC212- and ONC212/YM155-induced AML HL-60 cell death. The continuous treatment of U937 cells with the benzene metabolite hydroquinone (HQ) generated U937/HQ cells, exhibiting enhanced responsiveness to the cytotoxic effects of ONC212. In U937/HQ cells, ONC212 triggered apoptosis through NOXA-mediated MCL1 downregulation, enhancing YM155 cytotoxicity. Collectively, our data suggested that ONC212 upregulated SLC35F2 expression and triggered NOXA-mediated MCL1 degradation in U937, U937/HQ, and HL-60 cells by activating the AKT/NOX4/HuR/ATF4 pathway. The ONC212-induced signaling pathway showed anti-AML activity and enhanced YM155 cytotoxicity.


Subject(s)
Imidazoles , Leukemia, Myeloid, Acute , Myeloid Cell Leukemia Sequence 1 Protein , Naphthoquinones , Proto-Oncogene Proteins c-bcl-2 , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , U937 Cells , Imidazoles/pharmacology , Naphthoquinones/pharmacology , HL-60 Cells , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Synergism , Benzyl Compounds , Heterocyclic Compounds, 3-Ring , Sulfonamides , Bridged Bicyclo Compounds, Heterocyclic
16.
Toxics ; 12(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38668527

ABSTRACT

The sweet potato weevil Cylas formicarius is a notorious underground pest in sweet potato (Ipomoea batatas L.). However, little is known about the effects of cadmium (Cd) stress on weevil biology and resistance to pesticides and biotic agents. Therefore, we fed sweet potato weevils with Cd-contaminated sweet potato and assessed adult food intake and survival and larval developmental duration and mortality rates, as well as resistance to the insecticide spinetoram and susceptibility to the entomopathogenic fungus Beauveria bassiana. With increasing Cd concentration, the number of adult weevil feeding holes, adult survival and life span, and larval developmental duration decreased significantly, whereas larval mortality rates increased significantly. However, at the lowest Cd concentration (30 mg/L), adult feeding was stimulated. Resistance of adult sweet potato weevils to spinetoram increased at low Cd concentration, whereas Cd contamination did not affect sensitivity to B. bassiana. Thus, Cd contamination affected sweet potato weevil biology and resistance, and further studies will investigate weevil Cd accumulation and detoxification mechanisms.

18.
Neurooncol Adv ; 6(1): vdae024, 2024.
Article in English | MEDLINE | ID: mdl-38476930

ABSTRACT

Background: NF2-associated meningiomas are progressive, highly morbid, and nonresponsive to chemotherapies, highlighting the need for improved treatments. We have established aberrant activation of the mechanistic target of rapamycin (mTOR) signaling in NF2-deficient tumors, leading to clinical trials with first- and second-generation mTOR inhibitors. However, results have been mixed, showing stabilized tumor growth without shrinkage offset by adverse side effects. To address these limitations, here we explored the potential of third-generation, bi-steric mTOR complex 1 (mTORC1) inhibitors using the preclinical tool compound RMC-6272. Methods: Employing human NF2-deficient meningioma lines, we compared mTOR inhibitors rapamycin (first-generation), INK128 (second-generation), and RMC-6272 (third-generation) using in vitro dose-response testing, cell-cycle analysis, and immunoblotting. Furthermore, the efficacy of RMC-6272 was assessed in NF2-null 3D-spheroid meningioma models, and its in vivo potential was evaluated in 2 orthotopic meningioma mouse models. Results: Treatment of meningioma cells revealed that, unlike rapamycin, RMC-6272 demonstrated superior growth inhibitory effects, cell-cycle arrest, and complete inhibition of phosphorylated 4E-BP1 (mTORC1 readout). Moreover, RMC-6272 had a longer retention time than INK128 and inhibited the expression of several eIF4E-sensitive targets on the protein level. RMC-6272 treatment of NF2 spheroids showed significant shrinkage in size as well as reduced proliferation. Furthermore, in vivo studies in mice revealed effective blockage of meningioma growth by RMC-6272, compared with vehicle controls. Conclusions: Our study in preclinical models of NF2 supports possible future clinical evaluation of third-generation, investigational mTORC1 inhibitors, such as RMC-5552, as a potential treatment strategy for NF2.

20.
Cryobiology ; 114: 104860, 2024 03.
Article in English | MEDLINE | ID: mdl-38340888

ABSTRACT

During the freeze-thaw process, human spermatozoa are susceptible to oxidative stress, which may cause cryodamage and reduce sperm quality. As a novel mitochondria-targeted antioxidant, Mito-tempo has been used for sperm cryopreservation. However, it is currently unknown what role it will play in the process of sperm ultra-rapid freezing. The purpose of this study was to investigate whether Mito-tempo can improve sperm quality during ultra-rapid freezing. In this study, samples with the addition of Mito-tempo (0, 5, 10, 20, and 40 µM) to sperm freezing medium were selected to evaluate the changes in sperm quality, antioxidant capacity and ultrastructure after ultra-rapid freezing. After ultra-rapid freezing, the quality and antioxidant function of the spermatozoa were significantly reduced and the spermatozoa ultrastructure was destroyed. The addition of 10 µM Mito-tempo significantly increased post thaw sperm motility, viability, plasma membrane integrity and mitochondrial membrane potential (P < 0.05). Moreover, the DNA fragmentation index (DFI), ROS levels and MDA content were reduced, and the antioxidant enzyme (CAT and SOD) activities were enhanced in the 10 µM Mito-tempo group (P < 0.05). Moreover, Mito-tempo protected sperm ultrastructure from damage. In conclusion, Mito-tempo improved the quality and antioxidant function of sperm after ultra-rapid freezing while reducing freezing-induced ultrastructural damage.


Subject(s)
Antioxidants , Semen Preservation , Male , Humans , Antioxidants/pharmacology , Freezing , Cryopreservation/methods , Sperm Motility , Cryoprotective Agents/pharmacology , Semen , Spermatozoa , Mitochondria
SELECTION OF CITATIONS
SEARCH DETAIL
...