Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 37(4): e22826, 2023 04.
Article in English | MEDLINE | ID: mdl-36856608

ABSTRACT

Age-induced erectile dysfunction (ED) is a convoluted medical condition, and restoring erectile function (EF) under geriatric conditions is highly complicated. Platelet-rich plasma (PRP) treatment is an inexpensive cell-based therapeutic strategy. We have aimed to restore EF in aged-ED rats with PRP as a therapeutic tool. Male rats were grouped into aged and young according to age. The young rats were considered as normal control (NC) and treated with saline. Aged were further divided into 2 groups and treated with intracavernous (IC) PRP and saline. Treatment was scheduled at the 9th and 10th week for NC and 41th and 42th week for aged-ED rats, with EF analysis scheduled on the 12th week for NC and 44th week for aged-ED rats, respectively. Erectile response, immunofluorescence staining, and electron microscopic analyses were performed. IC PRP treatment effectively reduced prostate hyperplasia (PH). EF response indicated a significant increase in crucial EF parameters in PRP-treated aged-ED rats. Histological evidence denoted a rigid and restored development of tunica adventitia of the dorsal artery, decreased vacuolation of the dorsal penile nerve, and structural expansion of the epineurium. Masson's trichrome and immunostaining results affirmed an elevated expression of α-smooth muscle actin (α-SMA) in the corpus cavernosum (CC). Ultrastructure findings revealed that PRP effectively rejuvenated degenerating nerves, preserved endothelium and adherent junctions of corporal smooth muscle, and restored the axonal scaffolds by upregulating neurofilament-H (NF-H) expression. Finally, PRP enhanced neural stability by enhancing the axonal remyelination processes in aged-ED rats. Hence, PRP treatment was proven to restore EF in aged-ED rats, which was considered a safe, novel, cost-effective, and hassle-free strategy for EF restoration in geriatric patients.


Subject(s)
Erectile Dysfunction , Platelet-Rich Plasma , Prostatic Hyperplasia , Male , Animals , Rats , Humans , Hyperplasia , Prostate , Aging , Nerve Degeneration
2.
Biomed Pharmacother ; 158: 114155, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36916397

ABSTRACT

BACKGROUND: Solute carrier family nine isoform 3 (SLC9A3) is an Na+/H+ exchanger that regulates Ca2+ homeostasis. SLC9A3 is largely involved in the transepithelial absorption of Na+/H+ and frequently functions in pair with a Cl-/HCO3- exchanger. OBJECTIVE: To investigate the impact and pathophysiological mechanisms of long-term SLC9A3 deficiency on lower urinary tract symptoms (LUTS) in a mouse model MATERIALS AND METHODS: Slc9a3 knockout and wild-type mice (average >6 months) were used. The effects of SLC9A3 depletion on bladder and urethral functions and effectiveness of voiding were assessed using a cystometrogram (CMG). Histology, blood electrolytes, and gene expression were also analyzed. RESULTS: The SLC9A3-deficient mice had smaller gross bladders than the wild-type mice. The CMG analysis revealed normal peak micturition pressure, higher threshold pressure, short intercontraction interval, less voided volume, and poor compliance in the SLC9A3-deficient mice, similar to clinical LUTS. Histological analysis revealed loose detrusor muscle and loss of transformability of the urothelium in the SLC9A3-deficient mice. Masson's trichrome analysis revealed severe collagen deposition in the detrusor muscle. Immunofluorescence staining also demonstrated a significant decrease in cytokeratins 5 and 20. Gene and protein expression analyses confirmed that SLC9A3 does not act directly on bladder tissue. Homeostasis was correlated with bladder dysfunction in the SLC9A3-deficient mice. DISCUSSION: Fibrosis and collagen deposition in the bladder of the SLC9A3-deficient mice is due to bladder inflammation because of decreased blood flow and deregulated systemic homeostasis. Long-term SLC9A3 depletion causes progressive bladder dysfunction, similar to human LUTS. CONCLUSION: Electrolyte imbalance causes SLC9A3 deficiency-mediated progressive micturition dysfunction.


Subject(s)
Urinary Bladder , Urination , Animals , Humans , Mice , Electrolytes , Sodium-Hydrogen Exchangers , Urinary Bladder/pathology
3.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216309

ABSTRACT

This study explored the specific effects of ketamine on bladder function followed by a sequence of histological changes in a rat bladder at fixed time course intervals. The rats were grouped into normal control and experimental animals, and ketamine (100 mg/kg/day) was administrated to the experimental animals for 2, 4, and 8 weeks, respectively; similarly, the control animals received saline. All animals were evaluated for bladder function and histological responses to the treatment. Ultrastructural changes were observed by transmission electron microscopy (TEM). The results showed progressive bladder dysfunctions with hyperactive bladder conditions according to the time course and frequency of exposure to ketamine. Significantly, decreased inter contraction intervals, residual urine volume, peak micturition pressure, and increased micturition frequency were observed. Bladder histology results revealed substantial inflammation and comprehensive submucosa edema in week 2 and 4 rats along with fibrosis and significant bladder detrusor hypertrophy in week 8 rats. TEM analysis revealed bladder wall thickening, deformed blood vessels, detrusor hypertrophy, wobbled gap junction, and barrier dysfunction at different time course levels in experimental animals. These results provided a profound knowledge about the prognosis and step-by-step pathophysiology of the disease, which might help in developing new therapeutic interventions.


Subject(s)
Cystitis , Ketamine , Animals , Hypertrophy/pathology , Ketamine/pharmacology , Microscopy, Electron, Transmission , Rats , Rats, Sprague-Dawley , Urinary Bladder/pathology
4.
Sensors (Basel) ; 21(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34577209

ABSTRACT

Colonoscopy screening and colonoscopic polypectomy can decrease the incidence and mortality rate of colorectal cancer (CRC). The adenoma detection rate and accuracy of diagnosis of colorectal polyp which vary in different experienced endoscopists have impact on the colonoscopy protection effect of CRC. The work proposed a colorectal polyp image detection and classification system through grayscale images and deep learning. The system collected the data of CVC-Clinic and 1000 colorectal polyp images of Linkou Chang Gung Medical Hospital. The red-green-blue (RGB) images were transformed to 0 to 255 grayscale images. Polyp detection and classification were performed by convolutional neural network (CNN) model. Data for polyp detection was divided into five groups and tested by 5-fold validation. The accuracy of polyp detection was 95.1% for grayscale images which is higher than 94.1% for RGB and narrow-band images. The diagnostic accuracy, precision and recall rates were 82.8%, 82.5% and 95.2% for narrow-band images, respectively. The experimental results show that grayscale images achieve an equivalent or even higher accuracy of polyp detection than RGB images for lightweight computation. It is also found that the accuracy of polyp detection and classification is dramatically decrease when the size of polyp images small than 1600 pixels. It is recommended that clinicians could adjust the distance between the lens and polyps appropriately to enhance the system performance when conducting computer-assisted colorectal polyp analysis.


Subject(s)
Colonic Polyps , Colorectal Neoplasms , Deep Learning , Colonic Polyps/diagnostic imaging , Colonoscopy , Colorectal Neoplasms/diagnostic imaging , Humans , Neural Networks, Computer
5.
Sensors (Basel) ; 21(14)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34300632

ABSTRACT

Traditional bladder volume measurement from B-mode (two-dimensional) ultrasound has been found to produce inaccurate results, and thus in this work we aim to improve the accuracy of measurement from B-mode ultrasound. A total of 75 electronic medical records including ultrasonic images were reviewed retrospectively from 64 patients. We put forward a novel bladder volume measurement method, in which a three-dimensional (3D) reconstruction model was established from conventional two-dimensional (2D) ultrasonic images to estimate the bladder volume. The differences and relationships were analyzed among the actual volume, the traditional estimated volume, and the new reconstruction model estimated volume. We also compared the data in different volume groups from small volume to high volume. The mean actual volume is 531.8 mL and the standard deviation is 268.7 mL; the mean percentage error of traditional estimation is -28%. In our new bladder measurement method, the mean percentage error is -10.18% (N = 2), -4.72% (N = 3), -0.33% (N = 4), and 2.58% (N = 5). There is no significant difference between the actual volume and our new bladder measurement method (N = 4) in all data or the divided four groups. The estimated volumes from the traditional method or our new method are highly correlated with the actual volume. Our data show that the three-dimensional bladder reconstruction model provides an accurate measurement from conventional B-mode ultrasonic images compared with the traditional method. The accuracy is seen across different groups of volume, and thus we can conclude that this is a reliable and economical volume measurement model that can be applied in general software or in apps on mobile devices.


Subject(s)
Software , Urinary Bladder , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Retrospective Studies , Ultrasonography , Urinary Bladder/diagnostic imaging
6.
Cells ; 9(5)2020 05 19.
Article in English | MEDLINE | ID: mdl-32438565

ABSTRACT

Erectile dysfunction (ED) is an inability to attain or maintain adequate penile erection for successful vaginal intercourse, leading to sexual and relationship dissatisfaction. To combat ED, various surgical and non-surgical approaches have been developed in the past to restore erectile functions. These therapeutic interventions exhibit significant impact in providing relief to patients; however, due to their associated adverse effects and lack of long-term efficacy, newer modalities such as regenerative therapeutics have gained attention due to their safe and prolonged efficacy. Stem cells and platelet-derived biomaterials contained in platelet-rich plasma (PRP) are thriving as some of the major therapeutic regenerative agents. In recent years, various preclinical and clinical studies have evaluated the individual, as well as combined of stem cells and PRP to restore erectile function. Being rich in growth factors, chemokines, and angiogenic factors, both stem cells and PRP play a crucial role in regenerating nerve cells, myelination of axons, homing and migration of progenitor cells, and anti-fibrosis and anti-apoptosis of damaged cavernous nerve in corporal tissues. Further, platelet-derived biomaterials have been proven to be a biological supplement for enhancing the proliferative and differentiation potential of stem cells towards neurogenic fate. Therefore, this article comprehensively analyzes the progresses of these regenerative therapies for ED.


Subject(s)
Erectile Dysfunction/therapy , Regenerative Medicine , Animals , Biocompatible Materials/therapeutic use , Cell- and Tissue-Based Therapy , Cell-Free System , Erectile Dysfunction/physiopathology , Humans , Male , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...