Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Asian-Australas J Anim Sci ; 32(6): 776-782, 2019 06.
Article in English | MEDLINE | ID: mdl-30208688

ABSTRACT

OBJECTIVE: Fasting may lead to changes in the microbiota and activity in the rumen. In the present study, the effects of fasting on rumen microbiota and the impact of fasting on in vitro rumen fermentation were evaluated using molecular culture-independent methods. METHODS: Three ruminally cannulated Holstein steers were fed rice straw and concentrates. The ruminal fluids were obtained from the same steers 2 h after the morning feeding (control) and 24 h after fasting (fasting). The ruminal fluid was filtrated through four layers of muslin, collected for a culture-independent microbial analysis, and used to determine the in vitro rumen fermentation characteristics. Total DNA was extracted from both control and fasting ruminal fluids. The rumen microbiota was assessed using denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain reaction. Microbial activity was evaluated in control and fasting steers at various intervals using in vitro batch culture with rice straw and concentrate at a ratio of 60:40. RESULTS: Fasting for 24 h slightly affected the microbiota structure in the rumen as determined by DGGE. Additionally, several microorganisms, including Anaerovibrio lipolytica, Eubacterium ruminantium, Prevotella albensis, Prevotella ruminicola, and Ruminobacter amylophilus, decreased in number after fasting. In addition, using the ruminal fluid as the inoculum after 24 h of fasting, the fermentation characteristics differed from those obtained using non-fasted ruminal fluid. Compared with the control, the fasting showed higher total gas production, ammonia, and microbial protein production (p<0.05). No significant differences, however, was observed in pH and dry matter digestibility. CONCLUSION: When in vitro techniques are used to evaluate feed, the use of the ruminal fluid from fasted animals should be used with caution.

2.
Asian-Australas J Anim Sci ; 31(1): 40-46, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28427254

ABSTRACT

OBJECTIVE: To examine the effects of Rhodobacter sphaeroides (R. sphaeroides) supplementation as a direct-fed microbial (DFM) on rumen fermentation in dairy cows and on coenzyme Q10 (CoQ10) transition into milk, an in vitro rumen simulation batch culture and an in vivo dairy cow experiment were conducted. METHODS: The characteristics of in vitro ruminal fermentation were investigated using rumen fluids from six cannulated Holstein dairy cows at 2 h post-afternoon feeding. A control treatment was included in the experiments based on a typified total mixed ration (TMR) for lactating dairy cows, which was identical to the one used in the in vivo study, plus R. sphaeroides at 0.1%, 0.3%, and 0.5% TMR dry matter. The in vivo study employed six ruminally cannulated lactating Holstein cows randomly allotted to either the control TMR (C-TMR) treatment or to a diet supplemented with a 0.5% R. sphaeroides culture (S-TMR, dry matter basis) ad libitum. The presence of R. sphaeroides was verified using denaturing gradient gel electrophoresis (DGGE) applied to the bacterial samples obtained from the in vivo study. The concentration of CoQ10 in milk and in the supernatant from the in vitro study was determined using high performance liquid chromatography. RESULTS: The results of the in vitro batch culture and DGGE showed that the concentration of CoQ10 significantly increased after 2 h of R. sphaeroides supplementation above 0.1%. When supplemented to the diet of lactating cows at the level of 0.5%, R. sphaeroides did not present any adverse effect on dry matter intake and milk yield. However, the concentration of CoQ10 in milk dramatically increased, with treated cows producing 70.9% more CoQ10 than control cows. CONCLUSION: The CoQ10 concentration in milk increased via the use of a novel DFM, and R. sphaeroides might be used for producing value-added milk and dairy products in the future.

3.
Anim Reprod Sci ; 170: 51-60, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27068520

ABSTRACT

The main objective of this study was to investigate the effects of cultured wild ginseng root extracts (cWGRE) on the sperm of boars and the reproductive system of guinea pigs. Firstly, semen collected from boars (n=10) were incubated in 38°C for 1h with xanthine and xanthine oxidase to generate ROS. The cWGRE was added to the sperm culture system to test its antioxidant effect on the boar sperm. The amount of Reactive Oxygen Species (ROS) was measured by a chemiluminescence assay using luminol. The results indicated that the addition of cWGRE to boar sperm culture inhibited xanthine and xanthine oxidase-induced ROS concentrations. Treatment with cWGRE also had a positive effect on maintaining sperm motility. Effects of cWGRE administration on vitamin C-deficient guinea pigs were further investigated. Hartley guinea pigs (n=25) at 8 weeks of age were randomly divided into five groups. With the exception of the positive control group, each group was fed vitamin C-deficient feed for 21days (d). Respective groups were also orally administered cWGRE, ginseng extract, or mixed ginsenosides for 21 days. In comparison to the control group, oral administration of cWGRE reduced (P<0.05) amount of lipid peroxidation and increased (P<0.05) both glutathione peroxidase concentrations and the trolox equivalent antioxidant capacity. In addition, administration of cWGRE induced increases (P<0.05) in body weight, testosterone concentrations, and spermatid populations. The results of the present study support our hypothesis that cWGRE has positive effects on male reproductive functions via suppression of ROS production.


Subject(s)
Antioxidants/pharmacology , Panax/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Swine/physiology , Animals , Antioxidants/chemistry , Glutathione/metabolism , Guinea Pigs , Lipid Peroxidation , Male , Plant Extracts/chemistry , Sperm Motility/drug effects , Spermatids , Spermatogenesis , Spermatozoa/physiology , Testosterone/blood
4.
Asian-Australas J Anim Sci ; 27(11): 1562-70, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25358315

ABSTRACT

The effects of Lactobacillus mucosae (L. mucosae), a potential direct fed microbial previously isolated from the rumen of Korean native goat, on the rumen fermentation profile of brewers grain were evaluated. Fermentation was conducted in serum bottles each containing 1% dry matter (DM) of the test substrate and either no L. mucosae (control), 1% 24 h broth culture of L. mucosae (T1), or 1% inoculation with the cell-free culture supernatant (T2). Each serum bottle was filled anaerobically with 100 mL of buffered rumen fluid and sealed prior to incubation for 0, 6, 12, 24, and 48 h from which fermentation parameters were monitored and the microbial diversity was evaluated. The results revealed that T1 had higher total gas production (65.00 mL) than the control (61.33 mL) and T2 (62.00 mL) (p<0.05) at 48 h. Consequently, T1 had significantly lower pH values (p<0.05) than the other groups at 48 h. Ammonia nitrogen (NH3-N), individual and total volatile fatty acids (VFA) concentration and acetate:propionate ratio were higher in T1 and T2 than the control, but T1 and T2 were comparable for these parameters. Total methane (CH4) production and carbon dioxide (CO2) were highest in T1. The percent DM and organic matter digestibilities were comparable between all groups at all times of incubation. The total bacterial population was significantly higher in T1 (p<0.05) at 24 h, but then decreased to levels comparable to the control and T2 at 48 h. The denaturing gradient gel electrophoresis profile of the total bacterial 16s rRNA showed higher similarity between T1 and T2 at 24 h and between the control and T1 at 48 h. Overall, these results suggest that addition of L. mucosae and cell-free supernatant during the in vitro fermentation of dried brewers grain increases the VFA production, but has no effect on digestibility. The addition of L. mucosae can also increase the total bacterial population, but has no significant effect on the total microbial diversity. However, inoculation of the bacterium may increase CH4 and CO2 in vitro.

5.
Anim Sci J ; 82(5): 663-72, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21951902

ABSTRACT

Molecular diversity of methanogens in the rumen of Korean black goats was investigated with 16S rRNA gene clone libraries using methanogen-specific primers. The libraries were composed of rumen fluid-associated methanogens (FAM) and rumen particle-associated methanogens (PAM) from rumen-fistulated Korean black goats. Among the 141 clones of the FAM library, the sequences were mostly related to two phyla, the Methanobacteriaceae family (77.3%) and the Thermoplasmatales family (22.7%); and among the 68 clones of the PAM library, sequences were also mainly clustered in the two phyla, the Thermoplasmatales family (63.24%) and the Methanobacteriaceae family (35.29%). Most of the sequenced clones in the two libraries were closely related to uncultured methanogenic archaeon. Quantitative real-time PCR revealed that PAM (8.97 log 10) had significantly higher (P < 0.01) density of methanogens by the methanogenic 16S rRNA gene copies than FAM (7.57 log 10). The two clone libraries also showed difference in Shannon index (FAM library 1.70 and PAM library 1.59) and Chao 1 estimator (FAM library 18 and PAM library 17 operational taxonomic units). Apparent differences found in the microbial community from the two 16S rRNA gene libraries could be a result of such factors as the chemical and physical nature of the target material surface, types or component of diets, the interaction between the methanogens and other microbes, and age of the experimental goats.


Subject(s)
Goats/microbiology , Methanobacteriaceae/genetics , Methanobacteriaceae/isolation & purification , Phylogeny , Rumen/microbiology , Thermoplasmales/genetics , Thermoplasmales/isolation & purification , Age Factors , Animal Feed/microbiology , Animals , Gene Library , Genetic Variation , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...