Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol Clin Exp Res (Hoboken) ; 48(5): 810-826, 2024 May.
Article in English | MEDLINE | ID: mdl-38499395

ABSTRACT

BACKGROUND: People with alcohol use disorder (AUD) have an increased risk of developing pneumonia and pulmonary diseases. Alveolar macrophages (AMs) are immune cells of the lower respiratory tract that are necessary for clearance of pathogens. However, alcohol causes AM oxidative stress, mitochondrial damage and dysfunction, and diminished phagocytic capacity, leading to lung injury and immune suppression. METHODS: AMs were isolated by bronchoalveolar lavage from people with AUD and male and female C57BL/6J mice given chronic ethanol (20% w/v, 12 weeks) in drinking water. The peroxisome proliferator-activated receptor γ ligand, pioglitazone, was used to treat human AMs ex vivo (10 µM, 24 h) and mice in vivo by oral gavage (10 mg/kg/day). Levels of AM mitochondrial superoxide and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA, a marker of oxidative stress, were measured by fluorescence microscopy and RT-qPCR, respectively. Mouse AM phagocytic ability was determined by internalized Staphylococcus aureus, and mitochondrial capacity, dependency, and flexibility for glucose, long-chain fatty acid, and glutamine oxidation were measured using an extracellular flux analyzer. In vitro studies used a murine AM cell line, MH-S (±0.08% ethanol, 72 h) to investigate mitochondrial fuel oxidation and ATP-linked respiration. RESULTS: Pioglitazone treatment decreased mitochondrial superoxide in AMs from people with AUD and ethanol-fed mice and HIF-1α mRNA in ethanol-fed mouse lungs. Pioglitazone also reversed mouse AM glutamine oxidation and glucose or long-chain fatty acid flexibility to meet basal oxidation needs. In vitro, ethanol decreased the rate of AM mitochondrial and total ATP production, and pioglitazone improved changes in glucose and glutamine oxidation. CONCLUSIONS: Pioglitazone reversed chronic alcohol-induced oxidative stress in human AM and mitochondrial substrate oxidation flexibility and superoxide levels in mouse AM. Decreased ethanol-induced AM HIF-1α mRNA with pioglitazone suggests that this pathway may be a focus for metabolic-targeted therapeutics to improve morbidity and mortality in people with AUD.

2.
Front Immunol ; 13: 865492, 2022.
Article in English | MEDLINE | ID: mdl-35634337

ABSTRACT

Excessive alcohol use increases the risk of developing respiratory infections partially due to impaired alveolar macrophage (AM) phagocytic capacity. Previously, we showed that chronic ethanol (EtOH) exposure led to mitochondrial derangements and diminished oxidative phosphorylation in AM. Since oxidative phosphorylation is needed to meet the energy demands of phagocytosis, EtOH mediated decreases in oxidative phosphorylation likely contribute to impaired AM phagocytosis. Treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) ligand, pioglitazone (PIO), improved EtOH-mediated decreases in oxidative phosphorylation. In other models, hypoxia-inducible factor-1 alpha (HIF-1α) has been shown to mediate the switch from oxidative phosphorylation to glycolysis; however, the role of HIF-1α in chronic EtOH mediated derangements in AM has not been explored. We hypothesize that AM undergo a metabolic shift from oxidative phosphorylation to a glycolytic phenotype in response to chronic EtOH exposure. Further, we speculate that HIF-1α is a critical mediator of this metabolic switch. To test these hypotheses, primary mouse AM (mAM) were isolated from a mouse model of chronic EtOH consumption and a mouse AM cell line (MH-S) were exposed to EtOH in vitro. Expression of HIF-1α, glucose transporters (Glut1 and 4), and components of the glycolytic pathway (Pfkfb3 and PKM2), were measured by qRT-PCR and western blot. Lactate levels (lactate assay), cell energy phenotype (extracellular flux analyzer), glycolysis stress tests (extracellular flux analyzer), and phagocytic function (fluorescent microscopy) were conducted. EtOH exposure increased expression of HIF-1α, Glut1, Glut4, Pfkfb3, and PKM2 and shifted AM to a glycolytic phenotype. Pharmacological stabilization of HIF-1α via cobalt chloride treatment in vitro mimicked EtOH-induced AM derangements (increased glycolysis and diminished phagocytic capacity). Further, PIO treatment diminished HIF-1α levels and reversed glycolytic shift following EtOH exposure. These studies support a critical role for HIF-1α in mediating the glycolytic shift in energy metabolism of AM during excessive alcohol use.


Subject(s)
Glycolysis , Macrophages, Alveolar , Animals , Ethanol/adverse effects , Glucose Transporter Type 1 , Hypoxia , Lactic Acid , Mice
3.
Blood Adv ; 5(2): 399-413, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33496741

ABSTRACT

Sickle cell disease (SCD)-associated pulmonary hypertension (PH) causes significant morbidity and mortality. Here, we defined the role of endothelial specific peroxisome proliferator-activated receptor γ (PPARγ) function and novel PPARγ/HUWE1/miR-98 signaling pathways in the pathogenesis of SCD-PH. PH and right ventricular hypertrophy (RVH) were increased in chimeric Townes humanized sickle cell (SS) mice with endothelial-targeted PPARγ knockout (SSePPARγKO) compared with chimeric littermate control (SSLitCon). Lung levels of PPARγ, HUWE1, and miR-98 were reduced in SSePPARγKO mice compared with SSLitCon mice, whereas SSePPARγKO lungs were characterized by increased levels of p65, ET-1, and VCAM1. Collectively, these findings indicate that loss of endothelial PPARγ is sufficient to increase ET-1 and VCAM1 that contribute to endothelial dysfunction and SCD-PH pathogenesis. Levels of HUWE1 and miR-98 were decreased, and p65 levels were increased in the lungs of SS mice in vivo and in hemin-treated human pulmonary artery endothelial cells (HPAECs) in vitro. Although silencing of p65 does not regulate HUWE1 levels, the loss of HUWE1 increased p65 levels in HPAECs. Overexpression of PPARγ attenuated hemin-induced reductions of HUWE1 and miR-98 and increases in p65 and endothelial dysfunction. Similarly, PPARγ activation attenuated baseline PH and RVH and increased HUWE1 and miR-98 in SS lungs. In vitro, hemin treatment reduced PPARγ, HUWE1, and miR-98 levels and increased p65 expression, HPAEC monocyte adhesion, and proliferation. These derangements were attenuated by pharmacological PPARγ activation. Targeting these signaling pathways can favorably modulate a spectrum of pathobiological responses in SCD-PH pathogenesis, highlighting novel therapeutic targets in SCD pulmonary vascular dysfunction and PH.


Subject(s)
Anemia, Sickle Cell , Hypertension, Pulmonary , Anemia, Sickle Cell/genetics , Animals , Cell Proliferation , Endothelial Cells , Mice , NF-kappa B , PPAR gamma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...