Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(13): 36807-36823, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36564688

ABSTRACT

In this work, novel Prussian blue tetragonal nanorods were prepared by template-free solvothermal methods to remove radionuclide Cs and Sr. The as-prepared Prussian blue nanorods were identified and characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopic, thermogravimetric analysis, zeta potential, and surface analysis, and its sorption performance was tested by batch experiments. Our results suggest that Prussian blue nanorods exhibited better adsorption performance than co-precipitation PB or Prussian blue analogue composites. Thermodynamic analysis implied that the adsorption process was spontaneous and endothermic which was described well with the Langmuir isotherm and pseudo-second-order equation. The maximum adsorption capacity of PB nanorod was estimated to be 194.26 mg g-1 and 256.62 mg g-1 for Cs+ and Sr2+(adsorbate concentration at 500 mg L-1, the temperature at 298 k, pH at 7.0). Moreover, the experimental results showed that the Prussian blue nanorods have high crystallinity, few crystal defects, and good stability under alkaline conditions. The adsorption mechanism of Cs+ and Sr2+ was studied by X-ray photoelectron spectroscopy, X-ray diffraction, and 57Fe Mössbauer spectroscopy. The results revealed that Cs+ entered the PB crystal to generate a new phase, and most of Sr2+ was trapped in the internal crystal and the other exchanged Fe2+. Furthermore, the effect of co-existing ions and pH on PB adsorption process was also investigated. The results suggest that PB nanorods were an outstanding candidate for removing Cs+ and Sr2+ from radioactive wastewater.


Subject(s)
Strontium , Water Pollutants, Chemical , Strontium/analysis , Wastewater , Cesium/chemistry , Ferrocyanides/chemistry , Adsorption , Spectroscopy, Fourier Transform Infrared , Kinetics , Water Pollutants, Chemical/analysis
2.
Int J Radiat Biol ; 98(7): 1201-1209, 2022.
Article in English | MEDLINE | ID: mdl-34982648

ABSTRACT

PURPOSE: Ferroptosis is an iron-dependent form of regulated cell death, driven by excessive lipid peroxidation and/or inactivation/depletion of protective molecules against lipid peroxidation. Ionizing radiation can induce ferroptosis in both normal tissues and tumor cells. Here, we reviewed the findings of ionizing radiation-induced ferroptosis. CONCLUSIONS: Ionizing radiation induces an increase in hydroxyl radicals, free iron, and lipid metabolic enzymes, which subsequently synergistically initiate a high level of lipid peroxidation, making ionizing radiation an exogenous inducer of ferroptosis. In addition, ferroptosis may be the primary form of cell death in the bone marrow under hematopoietic acute radiation syndrome. Ionizing radiation can also induce changes in iron metabolism, which may be a target for regulating ferroptosis. Finally, ionizing radiation-induced ferroptosis initiates from the cytoplasm and ends on the membrane, and is independent of DNA damage.


Subject(s)
Ferroptosis , Radiation Exposure , Cell Death , Iron/metabolism , Lipid Peroxidation
3.
Nano Lett ; 21(16): 6983-6989, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34346219

ABSTRACT

Semiconductive metal-organic frameworks (MOFs) obtained by specific host-guest interactions have attracted a large interest in the last two decades, promising development of next-generation electronic devices. Herein, we designed and presented flexible X-ray detectors using Ni-DABDT (DABDT = 2,5-diamino-1,4-benzenedithiol dihydrochloride) MOFs as the absorbing layer. The π-d coupling interactions of Ni-DABDT throughout the framework implement a conspicuous carrier transportation pathway. The detector that converts X-ray photons directly into carriers manifests an attractive achievement with high detection sensitivity of 98.6 µC Gyair-1 cm-2, with a low detection limit of 7.2 µGyair s-1 for the radiation robustness. This work provides insights for next-generation green and high-performance flexible sensor detectors by utilizing MOF materials with the benefits of a designable structure and tunable property, demonstrating a proof-of-concept in wearable X-ray detectors for radiation monitoring and imaging.


Subject(s)
Metal-Organic Frameworks , Photons , X-Rays
4.
Chem Commun (Camb) ; 57(69): 8612-8615, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34369527

ABSTRACT

Here, we constructed Pb-free Cu-DABDT-MOFs-based (DABDT = 2,5-diamino-1,4-benzenedithiol) X-ray detectors. Combined with the advantage of high activation energy, the Cu-DABDT-MOFs-based detector can effectively generate and capture electrons under X-ray exposure and presents a high mobility-lifetime (µτ) product of 6.49 × 10-4 cm2 V-1 and promising detection sensitivity of 78.7 µC Gyair-1 cm-2. As groundbreaking work, these discoveries have provided information for exploring MOF materials toward green and high-performance high-energy radiation detectors by exploiting the designable structure and tunable properties of the MOF family.

5.
Materials (Basel) ; 14(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34300851

ABSTRACT

The diffusion of ferric ions is an important challenge to limit the application of Fricke gel dosimeters in accurate three-dimensional dose verification of modern radiotherapy. In this work, low-diffusion Fricke gel dosimeters, with a core-shell structure based on spatial confinement, were constructed by utilizing microdroplet ultrarapid freezing and coating technology. Polydimethylsiloxane (PDMS), with its excellent hydrophobicity, was coated on the surface of the pellets. The concentration gradient of the ferric ion was realized through shielding half of a Co-60 photon beam field size, and ion diffusion was measured by both ultraviolet-visible spectrophotometry and magnetic resonance imaging. No diffusion occurred between the core-shell pellets, even at 96 h after irradiation, and the diffusion length at the irradiation boundary was limited to the diameter (2-3 mm) of the pellets. Furthermore, Monte Carlo calculations were conducted to study dosimetric properties of the core-shell dosimeter, which indicated that a PDMS shell hardly affected the performance of the dosimeter.

6.
Materials (Basel) ; 14(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34204954

ABSTRACT

A shortage in the supply of 3He used for thermal neutron detector makes researchers to find 3He alternatives for developing new neutron detectors. Here, we prepared a neutron-sensitive composite liposome with tributyl borate and encapsulating with Fe3O4@oleic acid nanoparticles (Fe3O4@OA NPs), methylene blue (MB), or anti-albumin from bovine serum (anti-BSA). The tributyl borate compound was characterized by Fourier transform infrared spectroscopy (FT-IR). In addition, the morphology, element compositions, and magnetic properties of the composite liposome were investigated with transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and vibrating sample magnetometer (VSM), respectively. The results indicated that a typical ellipsoidal magnetic liposome structure was obtained, and the lengths of the minor axis and major axis were 49 ± 1 nm and 87 ± 3 nm, respectively. Under thermal neutron irradiation, the structure of composite liposome was destroyed, and encapsulated reporter molecules were released, which was detected by ultraviolet-visible (UV-vis) spectroscopy and surface plasmon resonance (SPR) technology. The response of this sensor based on a destructive assay shows a good correlation with neutron doses. Besides, the sensor has a neutron to gamma-ray rejection ratio of 1568 at a thermal neutron flux rate of 135.6 n/cm2·s, which makes it a promising alternative to 3He.

7.
ACS Appl Mater Interfaces ; 13(24): 28703-28709, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34101425

ABSTRACT

Two-dimensional (2D) metal-molecule hybrid frameworks have attracted great attention due to their π-d interactions for the charge-spin-lattice coupling, promising for next-generation molecular electronics. However, a high electrical conductivity is indispensable to realize such potential. Herein, we design and assemble a conductive 2D conjugated coordination thin film through an interfacial reaction between the aqueous and organic phases. Its electronic conducting properties are derived from the π-d coupling interactions to achieve an electrical conductivity of 1.05 S/cm, while the stimulus-dependent π-d interactions induce multifunctional sensory capabilities. The Co-DABDT (DABDT = 2,5-diamino-1,4-benzenedithiol dihydrochloride) thin films demonstrate an excellent performance for sensing light, strain, temperature, and humidity, as well as robust mechanical stability. The 2D frameworks with multisensing properties for real-time static and dynamic monitoring are promising for smart wearable electronic systems.

8.
Polymers (Basel) ; 13(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072009

ABSTRACT

Environment-responsive hydrogel actuators have attracted tremendous attention due to their intriguing properties. Gamma radiation has been considered as a green cross-linking process for hydrogel synthesis, as toxic cross-linking agents and initiators were not required. In this work, chitosan/agar/P(N-isopropyl acrylamide-co-acrylamide) (CS/agar/P(NIPAM-co-AM)) and CS/agar/Montmorillonite (MMT)/PNIPAM temperature-sensitive hydrogel bilayers were synthesized via gamma radiation at room temperature. The mechanical properties and temperature sensitivity of hydrogels under different agar content and irradiation doses were explored. The enhancement of the mechanical properties of the composite hydrogel can be attributed to the presence of agar and MMT. Due to the different temperature sensitivities provided by the two layers of hydrogel, they can move autonomously and act as a flexible gripper as the temperature changes. Thanks to the antibacterial properties of the hydrogel, their storage time and service life may be improved. The as prepared hydrogel bilayers have potential applications in control devices, soft robots, artificial muscles and other fields.

9.
ACS Nano ; 15(4): 6211-6232, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33834763

ABSTRACT

Printed copper materials have been attracting significant attention prominently due to their electric, mechanical, and thermal properties. The emerging copper-based flexible electronics and energy-critical applications rely on the control of electric conductivity, current-carrying capacity, and reliability of copper nanostructures and their printable ink materials. In this review, we describe the growth of copper nanostructures as the building blocks for printable ink materials on which a variety of conductive features can be additively manufactured to achieve high electric conductivity and stability. Accordingly, the copper-based flexible hybrid electronics and energy-critical devices printed by different printing techniques are reviewed for emerging applications.

10.
Int J Radiat Biol ; 97(4): 464-473, 2021.
Article in English | MEDLINE | ID: mdl-33464146

ABSTRACT

PURPOSE: Baicalein (an anti-ferroptosis drug) was recently reported to synergistically improve the survival rate of mice following a high dose of total body irradiation with anti-apoptosis and anti-necroptosis drugs. At the same time, our group has demonstrated that ferrostatin-1, a ferroptosis inhibitor, improves the survival rate of a mouse model of hematopoietic acute radiation syndrome to 60% for 150 days (p < .001). These phenomena suggest that ferroptosis inhibition can mitigate radiation damage. In this study, we continued to study the mechanisms by which ferrostatin-1 alleviated radiation-induced ferroptosis and subsequent hematopoietic acute radiation syndrome. MATERIALS AND METHODS: Male ICR mice (8-10 weeks old) were exposed to doses of 0, 8, or 10 Gy irradiated from a 137Cs source. Ferrostatin-1 was intraperitoneally injected into mice 72 h post-irradiation. Bone marrow mononuclear cells (BMMCs) and peripheral blood cells were counted. The changes in iron-related parameters, lipid metabolic enzymes, lipid peroxidation repair molecules (glutathione peroxidase 4, glutathione, and coenzyme Q10), and inflammatory factors (TNF-α, IL-6, and IL-1ß) were evaluated using biochemical or antibody techniques. RESULTS: Ferrostatin-1 increased the number of red and white blood cells, lymphocytes, and monocytes in the peripheral blood after total body irradiation in mice by mitigating the ferroptosis of BMMCs. Total body irradiation induced ferroptosis in BMMCs by increasing the iron and lipid peroxidation levels and depleting the acyl-CoA synthetase long-chain family member 4 (ASCL4), lipoxygenase 15, glutathione peroxidase 4, and glutathione levels. Ferroptotic BMMCs did not release TNF-α, IL-6, or IL-1ß at the early stage of radiation exposure. Ferrostatin-1 mitigated the lipid peroxidation of radiation-induced ferroptosis by attenuating increases in levels of hemosiderin and liable iron pool and decreases in levels of ASCL4 and glutathione peroxidase 4. CONCLUSIONS: The onset of total body irradiation-induced ferroptosis in BMMCs involved changes in iron, lipid metabolic enzymes, and anti-lipid peroxidation molecules. Ferrostatin-1 could be a potential radiation mitigation agent by acting on these targets.


Subject(s)
Acute Radiation Syndrome/pathology , Cyclohexylamines/pharmacology , Hematopoiesis/drug effects , Phenylenediamines/pharmacology , Animals , Ferroptosis/drug effects , Ferroptosis/radiation effects , Hematopoiesis/radiation effects , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects , Male , Mice , Mice, Inbred ICR
11.
Anal Sci ; 37(2): 309-314, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33342922

ABSTRACT

Radiation-sensitive biomolecules are highly significant for studying biological effects of radiation and developing ionizing radiation detectors based on biomolecules. In this work, we selected hypoxanthine phosphoribosyl transferase gene fragments sensitive to gamma-ray irradiation as a sensing element for radiation detection. The end was modified with thiol groups. The thiol-modified oligonucleotide sequences were coupled to the surface of gold nanoparticles by Au-S covalent bonds. The DNA attached to the surface of gold nanoparticles forms a DNA-AuNPs assembly through base pairing. The assembly was irradiated by gamma rays. And its response to radiation was studied with ultraviolet-visible spectroscopy and surface-enhanced Raman scattering (SERS) spectroscopy techniques. SERS spectroscopy and ultraviolet spectroscopy can detect the response of the DNA-AuNPs assembly to gamma-ray irradiation below 100 and 100 - 250 Gy, respectively. The results indicated that it was feasible to develop a new approach of gamma-ray detectors using biomolecular assemblies of gold nanoparticles.


Subject(s)
Gamma Rays , Gold/metabolism , Hypoxanthine Phosphoribosyltransferase/metabolism , Metal Nanoparticles/chemistry , DNA/chemistry , DNA/metabolism , Gold/chemistry , Humans , Hypoxanthine Phosphoribosyltransferase/genetics
12.
ACS Appl Mater Interfaces ; 12(37): 42403-42409, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32833430

ABSTRACT

It is very important to control the ionizing radiation dose in radiation therapy, which depends on the accurate and rapid measurement of radiation. Herein, a novel and highly sensitive nanosensor for γ-radiation detection is constructed using single-stranded DNA sequences as radiation-sensitive material and gold nanoparticles (AuNPs) as a signal reporter. Well-dispersed AuNPs gradually aggregated at high salt concentration when the sensor was irradiated, and this change was quantified by the visible spectra and surface plasmon resonance spectra. The radiation nanosensor has excellent linearity in the dose range of 0-100 Gy under optimal conditions. This method is simple and fast, which provides a new path for the γ-radiation dosimeter and has potential applications in the assessment of radiation-induced biological effects.


Subject(s)
DNA/chemistry , Gamma Rays , Gold/chemistry , Metal Nanoparticles/chemistry , Nanotechnology , Particle Size , Surface Properties
13.
Int J Radiat Biol ; 96(5): 584-595, 2020 05.
Article in English | MEDLINE | ID: mdl-31906761

ABSTRACT

Purpose: To study whether radiation-induced bleeding in the bone marrow induced iron accumulation, and subsequently caused ferroptosis in granulocyte-macrophage hematopoietic progenitor cells.Materials and methods: Male mice were subjected to different doses (0, 4, 8, or 10 Gy) of gamma radiation from a 137Cs source. The changes in iron metabolism or ferroptosis-related parameters of irradiated bone marrow were accessed with biochemical, histopathological, and antibody methods. Hematocytes were detected with a hematology analyzer. The counts of granulocyte-macrophage hematopoietic progenitor cells were measured with the granulocyte-macrophage colony-forming unit.Results: Iron accumulation occurred in the bone marrow, which caused by radiation-induced hemorrhage. The iron accumulation triggered an iron regulatory protein-ferroportin 1 axis to increase serum iron levels. Using LDN193189, radiation-induced iron accumulation was demonstrated to decrease white blood cell counts at least partly through a decrease in the counts of granulocyte-macrophage hematopoietic progenitor cells. The reduction in the counts of granulocyte-macrophage hematopoietic progenitor cells was subsequently demonstrated to attribute to ferroptosis with the use of ferroptosis inhibitors and through the detection of ferroptosis related-parameters. The survival rate of irradiated mice was improved using Ferrostatin-1 or LDN193189.Conclusions: These findings suggest that radiation-induced hemorrhage in the bone marrow causes ferroptosis in granulocyte-macrophage hematopoietic progenitor cells, and anti-ferroptosis has the potential to be a radioprotective strategy to ameliorate radiation-induced hematopoietic injury.


Subject(s)
Ferroptosis/radiation effects , Granulocyte-Macrophage Progenitor Cells/radiation effects , Animals , Cyclohexylamines/pharmacology , Gamma Rays , Granulocyte-Macrophage Progenitor Cells/metabolism , Granulocyte-Macrophage Progenitor Cells/pathology , Iron/metabolism , Leukocyte Count , Male , Mice , Mice, Inbred ICR , Phenylenediamines/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology
14.
Nanoscale Adv ; 2(9): 3900-3905, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-36132789

ABSTRACT

Cooling represents a considerable fraction of energy consumption. However, it is indispensable to develop eco-friendly, biocompatible, and ductile cooling materials for personal applications. In this study, we demonstrate the ductile cooling ability with phase change of thermally passivated hydrogel composite materials with additive manufacturing ability. Thermal evaluation of such water-based composites indicates a superior cold retention capacity with a cooling comfort over 6 hours, while the composite displays a full recovery when strained up to 80% in uniaxial compression tests as a result of the intertwining between covalent and ionic bonds. A three-layered rectangular model was utilized to simulate the problem in a steady-state thermal analysis to study the cooling effect. Our findings indicate the potential of hydrogel as a cooling phase-change medium and its contribution towards ductile cooling applications.

15.
Nanoscale ; 11(46): 22585-22589, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31746911

ABSTRACT

We report the controlled interfacial interaction in crystallized organic charge transfer thin films, consisting of bis(ethylenedithio)tetrathiafulvalene and C60. The induced broad-band absorption from the UV to near-infrared region leads to a wavelength dependent ambipolar (negative/positive) photoresponse, while multi-stimuli responsive behavior is achieved through charge-transfer interactions. In addition, by coupling with the tetrathiafulvalene-(7,7,8,8-tetracyanoquinodimethane) charge transfer complex, a significantly increased conductivity is achieved. The controlled interfacial charge transfer interaction provides an efficient approach to obtain multifunctional molecular crystallized thin films with a superior external stimuli response.

16.
Nanomaterials (Basel) ; 9(4)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30986922

ABSTRACT

Quantum dots (QDs) have attracted great attention due to their unique optical properties. High fluorescence efficiency is very important for their practical application. In this study, we report a simple and efficient strategy to enhance the photoluminescence of water-dispersed thiol-capped QDs using γ-radiation. Three kinds of QDs with different surface ligands and cores (MPA-CdTe, MPA-CdSe and Cys-CdTe) were fabricated and irradiated by high-energy γ-ray in an aqueous solution. Their photoluminescence intensities were significantly enhanced after irradiation, which were closely related to the radiation dose and the structure of QDs. The positions of the fluorescence emission peaks did not shift obviously after irradiation. The mechanism of photoluminescence enhancement was discussed based on the results of photoluminescence (PL) spectra, UV-visible light absorption (UV-vis) spectra, transmission electron microscope (TEM), X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS). This method can be employed to uniformly treat large batches of QDs at room temperature and without other chemicals.

17.
Technol Cancer Res Treat ; 18: 1533033819844485, 2019 01 01.
Article in English | MEDLINE | ID: mdl-31010405

ABSTRACT

PURPOSE: To study the effect of a metal tracheal stent on radiation dose distribution. METHOD: A metal tube bracket is placed in a self-made foam tube sleeve, and micro-computed tomography scanning is performed directly. The foam sleeve containing the metal bracket is placed in a nonuniform phantom for a routine computed tomography scan. The stents in conventional computed tomography images are replaced by the stents in micro-computed tomography images. Subsequently, 2 sets of computed tomography images are obtained and then imported to a radiotherapy treatment planning system. A single photon beam at 0° is designed in a field size of 10 cm × 10 cm, a photon beam of 6 MV, and a monitor unit of 200 MU. Monte Carlo algorithm is used to calculate the dose distribution and obtain the dose curve of the central axis of the field. The dose is verified with thermoluminescence dose tablets. RESULTS: The micro-computed tomography images of the tracheal stent are clearer and less false-like than its conventional computed tomography images. The planned dose curves of the 2 groups are similar. In comparison with the images without any stents in place, the doses at the incident surface of the stent in the conventional computed tomography images and at the stent exit surface in the rear of the stent increase by 1.86% and 2.76%, respectively. In the micro-computed tomography images, the doses at the incident surface of the stent and at the exit surface behind the stent increase by 1.32% and 1.19%, respectively. Conventional computed tomography reveals a large deviation between the measured and calculated values. CONCLUSION: Tracheal stent based on micro-computed tomography imaging has a less effect on radiotherapy calculation than that based on conventional computed tomography imaging.


Subject(s)
Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiotherapy Dosage , X-Ray Microtomography/methods , Algorithms , Humans , Metals/therapeutic use , Neoplasms/pathology , Phantoms, Imaging , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Stents
18.
Chemosphere ; 215: 15-24, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30300807

ABSTRACT

The objective of this work was to explore the mechanisms participating in strontium sorption by living Saccharomyces cerevisiae (S. cerevisiae). The location of strontium adsorbed by S. cerevisiae was studied by our plasmolysis treatment. The contribution of physical and chemical mechanisms was determined quantitatively by desorption and blockage of functional groups. Moreover, our results indicated that bioaccumulation also played a major role in biosorption by living cells. Thus, supplementary methods including 2-DE (two-dimensional electrophoresis) and Matrix-Assisted Laser Desorption/Ionization Tandem Time of Flight Mass Spectrometry (MALDI-TOF-TOF) were employed to analyze the different proteins. The subsequent desorption % of Sr2+ by Distilled Water (DW), NH4NO3 and EDTA-Na2 from Sr2+ loaded sorbents indicated a minor role for physical adsorption, while ion exchange and complexation were responsible for approximately 20% and 40%. Specific blockage of functional groups revealed that carboxyl and amine groups played an important role in Sr2+ binding to the living S. cerevisiae. From our MALDI-TOF-TOF results, we concluded that 38 proteins showed up-regulated expression profiles and 11 proteins showed down-regulated after biosorption. Moreover, proteins belong to: phagocytic function (Act1p); ion channel (S-adenosylmethionine synthase); glycolysis (Tubulin) may directly involve in strontium bioaccumulation. In conclusion, the present work indicates that the strontium sorption mechanism by living S. cerevisiae is complicated including ion-exchange along with complexation as the main mechanism, whereas the other mechanisms such as physical adsorption play a minor contribution. Metabolically-dependent proteins may play an important role in bioaccumulation.


Subject(s)
Gene Expression Regulation, Fungal/drug effects , Metabolic Networks and Pathways/drug effects , Proteome/analysis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Strontium/pharmacology , Adsorption , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
19.
Nanoscale ; 10(48): 23170-23174, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30516223

ABSTRACT

Multicomponent crystalline heterostructures are a powerful approach to integrate different functional materials into the ordered structures. Here we describe three-dimensional spherical assembly of binary organic solids that consist of electron donor and acceptor molecules. A mechanistic study of heterostructure formation reveals that the dewetting and drying-mediated assembly processes are responsible for the spherical crystallite formation. The assembled spherical heterostructures are highly tunable, crystalline and chemically stable, exhibiting phase separation controlled optoelectronic behavior. This simple, generalizable three-dimensional assembly can be modified for the formation of ordered functional organic multicomponent heterostructures for emerging applications.

20.
Artif Cells Nanomed Biotechnol ; 46(sup3): S922-S930, 2018.
Article in English | MEDLINE | ID: mdl-30307330

ABSTRACT

Radiotherapy is one of the most widely used treatments for therapy of malignant tumors, but resistance to radiation of hypoxic cells in tumor tissues is still a serious concern. Previous studies have demonstrated that silver nanoparticles (AgNPs) enhance the radiosensitivity of human glioma cells in vitro, but the effect of AgNPs on hypoxic glioma cells has not been investigated in detail. The main purpose of this study is to evaluate the radiosensitizing efficacy of AgNPs on hypoxic glioma cells. The half maximal inhibitory concentration (IC50) values of AgNPs for the hypoxic U251 cells and C6 cells were 30.32 µg/mL and 27.53 µg/mL, respectively. The sensitization enhancement ratio (SER) demonstrated that AgNPs exhibit higher capacity in radiosensitization in hypoxic cells (U251: 1.78; C6: 1.84) than that in normoxic cells (U251: 1.34; C6: 1.45). The underlying mechanism of AgNPs' radiosensitization in hypoxic cells is through the promotion of apoptosis and enhanced destructive autophagy. There is evidence of crosstalk between apoptosis and autophagy in AgNPs-radiosensitized hypoxic cells where inhibition of autophagy results in decreased apoptosis. These findings suggest that AgNPs can be used as a highly effective nano-radiosensitizer for the treatment of hypoxic glioma.


Subject(s)
Brain Neoplasms , Glioma , Metal Nanoparticles , Radiation-Sensitizing Agents , Silver , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Cell Hypoxia/drug effects , Cell Hypoxia/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Glioma/metabolism , Glioma/pathology , Glioma/radiotherapy , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Silver/chemistry , Silver/pharmacology , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...