Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(9): e2310993121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38386707

ABSTRACT

How do vessels find optimal radii? Capillaries are known to adapt their radii to maintain the shear stress of blood flow at the vessel wall at a set point, yet models of adaptation purely based on average shear stress have not been able to produce complex loopy networks that resemble real microvascular systems. For narrow vessels where red blood cells travel in a single file, the shear stress on vessel endothelium peaks sharply when a red blood cell passes through. We show that stable shear-stress-based adaptation is possible if vessel shear stress set points are cued to the stress peaks. Model networks that respond to peak stresses alone can quantitatively reproduce the observed zebrafish trunk microcirculation, including its adaptive trajectory when hematocrit changes or parts of the network are amputated. Our work reveals the potential for mechanotransduction alone to generate stable hydraulically tuned microvascular networks.


Subject(s)
Mechanotransduction, Cellular , Zebrafish , Animals , Microvessels , Endothelium, Vascular , Veins
2.
Front Cardiovasc Med ; 9: 841101, 2022.
Article in English | MEDLINE | ID: mdl-35369301

ABSTRACT

Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a zebrafish model by using tail amputation to disrupt the embryonic circulatory loop (ECL) at 3 days post fertilization (dpf). We observed a local increase in blood flow and peak WSS in the Segmental Artery (SeA) immediately adjacent to the amputation site. By manipulating blood flow and WSS via changes in blood viscosity and myocardial contractility, we show that the angiogenic Notch-ephrinb2 cascade is hemodynamically activated in the SeA to guide arteriogenesis and network reconnection. Taken together, ECL amputation induces changes in microvascular topology to partition blood flow and increase WSS-mediated Notch-ephrinb2 pathway, promoting new vascular arterial loop formation and restoring microcirculation.

3.
J Theor Biol ; 462: 48-64, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30420333

ABSTRACT

Within animals, oxygen exchange occurs within vascular transport networks containing potentially billions of microvessels that are distributed throughout the body. By comparison, large blood vessels are theorized to minimize transport costs, leading to tree-like networks that satisfy Murray's law. We know very little about the principles underlying the organization of healthy micro-vascular networks. Indeed capillary networks must also perfuse tissues with oxygen, and efficient perfusion may be incompatible with minimization of transport costs. While networks that minimize transport costs have been well-studied, other optimization principles have received much less scrutiny. In this work we derive the morphology of networks that uniformize blood flow distribution, inspired by the zebrafish trunk micro-vascular network. To find uniform flow networks, we devise a gradient descent algorithm able to optimize arbitrary differentiable objective functions on transport networks, while exactly respecting arbitrary differentiable constraint functions. We prove that in a class of networks that we call stackable, which includes a model capillary bed, the uniform flow network will have the same flow as a uniform conductance network, i.e., in which all edges have the same conductance. This result agrees with uniform flow capillary bed network found by the algorithm. We also show that the uniform flow completely explains the observed radii within the zebrafish trunk vasculature. In addition to deriving new results on optimization of uniform flow in micro-vascular networks, our algorithm provides a general method for testing hypotheses about possible optimization principles underlying real microvascular networks, including exposing tradeoffs between flow uniformity and transport cost.


Subject(s)
Hemodynamics , Microcirculation , Models, Biological , Algorithms , Animals , Biological Transport , Blood Flow Velocity , Capillaries , Oxygen/metabolism , Zebrafish/physiology
4.
PLoS One ; 13(9): e0204700, 2018.
Article in English | MEDLINE | ID: mdl-30235353

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0169856.].

5.
Comput Psychiatr ; 2: 205-222, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30627671

ABSTRACT

Bipolar disorder is a common psychiatric dysfunction characterized by recurring episodes of mania and depression. Despite its prevalence, the causes and mechanisms of bipolar disorder remain largely unknown. Recently, theories focusing on the interaction between emotion and behavior, including those based on dysregulation of the so-called behavioral approach system (BAS), have gained popularity. Mathematical models built on this principle predict bistability in mood and do not invoke intrinsic biological rhythms that may arise from interactions between mood and expectation. Here we develop and analyze a model with clinically meaningful and modifiable parameters that incorporates the interaction between mood and expectation. Our nonlinear model exhibits a transition to limit cycle behavior when a mood-sensitivity parameter exceeds a threshold value, signaling a transition to a bipolar state. The model also predicts that asymmetry in response to positive and negative events can induce unipolar depression/mania, consistent with clinical observations. We analyze the model with asymmetric mood sensitivities and show that large unidirectional mood sensitivity can lead to bipolar disorder. Finally, we show how observed effects of lithium- and antidepressant-induced mania can be explained within the framework of our proposed model.

6.
PLoS Comput Biol ; 13(12): e1005892, 2017 12.
Article in English | MEDLINE | ID: mdl-29244812

ABSTRACT

In animals, gas exchange between blood and tissues occurs in narrow vessels, whose diameter is comparable to that of a red blood cell. Red blood cells must deform to squeeze through these narrow vessels, transiently blocking or occluding the vessels they pass through. Although the dynamics of vessel occlusion have been studied extensively, it remains an open question why microvessels need to be so narrow. We study occlusive dynamics within a model microvascular network: the embryonic zebrafish trunk. We show that pressure feedbacks created when red blood cells enter the finest vessels of the trunk act together to uniformly partition red blood cells through the microvasculature. Using mathematical models as well as direct observation, we show that these occlusive feedbacks are tuned throughout the trunk network to prevent the vessels closest to the heart from short-circuiting the network. Thus occlusion is linked with another open question of microvascular function: how are red blood cells delivered at the same rate to each micro-vessel? Our analysis shows that tuning of occlusive feedbacks increase the total dissipation within the network by a factor of 11, showing that uniformity of flows rather than minimization of transport costs may be prioritized by the microvascular network.


Subject(s)
Microcirculation/physiology , Microvessels/physiology , Models, Cardiovascular , Animals , Animals, Genetically Modified , Blood Flow Velocity/physiology , Computational Biology , Erythrocytes/physiology , Feedback, Physiological , Hemorheology , Microvessels/anatomy & histology , Zebrafish
7.
PLoS One ; 12(1): e0169856, 2017.
Article in English | MEDLINE | ID: mdl-28068391

ABSTRACT

Stimuli-sensitive hydrogels have been intensively studied because of their potential applications in drug delivery, cell culture, and actuator design. Although hydrogels with directed unidirectional response, i.e. capable of bending actuated by different chemical components reaction in response to several stimuli including water and electric fields, these hydrogels are capable of being actuated in one direction only by the stimulus. By contrast the challenge of building a device that is capable of responding to the same cue (in this case a temperature gradient) to bend in either direction remains unmet. Here, inspired by the structure of pine cone scales, we design a temperature-sensitive hydrogel with bending directed an imposed fishing line. The layers with same PNIPAAm always shrinks in response to the heat. Even the layers made with different chemical property, bends away from a warm surface, whether the warm surface is applied at its upper or lower boundary. To design the bending hydrogel we exploited the coupled responses of the hydrogel; a fishing line intercalating structure and change its construction. In addition to revealing a new capability of stimulus sensitive hydrogels, our study gives insight into the structural features of pine cone bending.


Subject(s)
Hydrogels/chemistry , Algorithms , Biocompatible Materials/chemistry , Elastic Modulus , Heating , Materials Testing , Models, Theoretical , Pinus/chemistry , Tensile Strength
8.
Front Life Sci ; 10(1): 38-47, 2017.
Article in English | MEDLINE | ID: mdl-29732239

ABSTRACT

One of the primary purposes of pine cones is the protection and distant dispersal of pine seeds. Pine cones open and release their embedded seeds on dry and windy days for long-distance dispersal. In this study, how the pine seed attach to/ detach from the pine cone scale for efficient seed dispersal were experimentally investigated by using X-ray micro-imaging technique. The cone and seeds adhere to one another in the presence of water, which could be explained by the surface tension and the contact angle hysteresis. Otherwise, without water, the waterproof seed wing surface permits rapid drying for detach and dispersion. On the other hand, during wildfires, pine cones open their seed racks and detach the pine seeds from pine cones for rapid seed dispersal. Due to these structural advantages, pine seeds are released safely and efficiently on adjust condition. These advantageous structure could be mimicked in practical applications.

9.
Mol Biol Cell ; 27(13): 2000-7, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27193301

ABSTRACT

Nuclei in syncytia found in fungi, muscles, and tumors can behave independently despite cytoplasmic translation and the homogenizing potential of diffusion. We use a dynactin mutant strain of the multinucleate fungus Ashbya gossypii with highly clustered nuclei to assess the relative contributions of nucleus and cytoplasm to nuclear autonomy. Remarkably, clustered nuclei maintain cell cycle and transcriptional autonomy; therefore some sources of nuclear independence function even with minimal cytosol insulating nuclei. In both nuclear clusters and among evenly spaced nuclei, a nucleus' transcriptional activity dictates local cytoplasmic contents, as assessed by the localization of several cyclin mRNAs. Thus nuclear activity is a central determinant of the local cytoplasm in syncytia. Of note, we found that the number of nuclei per unit cytoplasm was identical in the mutant to that in wild-type cells, despite clustered nuclei. This work demonstrates that nuclei maintain autonomy at a submicrometer scale and simultaneously maintain a normal nucleocytoplasmic ratio across a syncytium up to the centimeter scale.


Subject(s)
Cell Nucleus/metabolism , Giant Cells/metabolism , Cell Cycle/physiology , Cell Nucleus/physiology , Cell Nucleus Division/physiology , Cyclins/metabolism , Cytoplasm/metabolism , Cytoplasm/pathology , Fungal Proteins/metabolism , Fungi/metabolism , Giant Cells/physiology , Mitosis , Saccharomycetales/metabolism , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...