Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(2): e0281275, 2023.
Article in English | MEDLINE | ID: mdl-36730174

ABSTRACT

Vector-based retrieval have been widely adopted to process online users' diverse interests for recommendations. However, most of them utilize a single vector to represent user multiple interests (UMI), inevitably impairing the accuracy and diversity of item retrieval. In addition, existing work often does not take into account the scale and speed of the model, and high-dimensional user representation vectors need high computation cost, leading to inefficient item retrieval. In this paper, we propose a novel lightweight multi-interest retrieval network (MIRN) by incorporating sequence-to-interest Expectation Maximization (EM) routing to deal with users' multiple interests. By leveraging representation ability of the Capsule network, we design a multi-interest representation learning module that clusters multiple Capsule vectors from the user's behavior sequence to represent each of their interests respectively. In addition, we introduce a composite capsule clustering strategy for the Capsule network framework to reduce the scale of the network model. Furthermore, a Capsule-aware module incorporating an attention mechanism has been developed to guide model training by adaptively learning multiple Capsule vectors of user representations. The experimental results demonstrate MIRN outperforms the state-of-the-art approaches for item retrieval and gains significant improvements in terms of metric evaluations.

2.
J Phycol ; 55(3): 521-533, 2019 06.
Article in English | MEDLINE | ID: mdl-30849184

ABSTRACT

Although increasing the pCO2 for diatoms will presumably down-regulate the CO2 -concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 µatm, pH 8.1), carbonated (pCO2 800 µatm, pH 8.1), acidified (pCO2 400 µatm, pH 7.8), and OA (pCO2 800 µatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down-regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2 , than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross-membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.


Subject(s)
Diatoms , Carbon Dioxide , Hydrogen-Ion Concentration , Oceans and Seas , Photosynthesis , Seawater
3.
Science ; 356(6337): 527-531, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28450383

ABSTRACT

Acidification of seawater caused by anthropogenic carbon dioxide (CO2) is anticipated to influence the growth of dinitrogen (N2)-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N2-fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO2 Acidification resulted in low cytosolic pH and reduced N2-fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification.


Subject(s)
Nitrogen Fixation , Nitrogen/metabolism , Seawater/chemistry , Seawater/microbiology , Trichodesmium/growth & development , Trichodesmium/metabolism , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Iron Deficiencies , Nitrogenase/metabolism , Oceans and Seas , Proton Pumps/metabolism
4.
Cell Mol Bioeng ; 3(2): 139-150, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20563238

ABSTRACT

Nesprins are located at the outer and inner membranes of the nuclear envelope and help link the cytoskeleton to the nucleoskeleton. Nesprin-1α, located at the inner nuclear membrane, binds to A-type lamins and emerin and has homology to spectrin-repeat proteins. However, the mechanical and thermodynamic properties of the spectrin-like repeats (SLRs) of nesprin-1α and the potential structural contributions of the unique central domain were untested. In other spectrin superfamily proteins, tandem spectrin-repeat domains undergo cooperatively coupled folding and unfolding. We hypothesized that the large central domain, which interrupts SLRs and is conserved in other nesprin isoforms, might confer unique structural properties. To test this model we measured the thermal unfolding of nesprin-1α fragments using circular dichroism and dynamic light scattering. The SLRs in nesprin-1α were found to have structural and thermodynamic properties typical of spectrins. The central domain had relatively little secondary structure as an isolated fragment, but significantly stabilized larger SLR-containing molecules by increasing their overall helicity, thermal stability and cooperativity of folding. We suggest this domain, now termed the 'adaptive' domain (AD), also strengthens dimerization and inhibits unfolding. Further engineering of the isolated AD, and AD-containing nesprin molecules, may yield new information about the higher-order association of cooperative protein motifs.

SELECTION OF CITATIONS
SEARCH DETAIL
...