Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Pulmonol ; 49(6): 521-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24039248

ABSTRACT

BACKGROUND: There are few studies focusing on the comparison of resistance (Rrs) and reactance (Xrs) in impulse oscillometry system (IOS) in the bronchial challenge test using dose-response slope (DRS), a quantitative index of bronchial hyperresponsiveness. MATERIAL AND METHODS: We conducted a case-control study of 144 asthmatic and 218 non-asthmatic children to compare the diagnostic accuracy of two-point linear DRS for FEV1 , Rrs5 , and Xrs5 (DRS_FEV1 , DRS_Rrs5 , and DRS_Xrs5 ) and assessed various diagnostic cut-off points of provocation concentrations (PC) using receiver operating characteristic (ROC) curves. RESULTS: DRS_FEV1 had a stronger correlation with DRS_Xrs5 (r = 0.739, P < 0.001) than with DRS_Rrs5 (r = 0.652, P < 0.001) and the area under the ROC curves of DRS_Xrs5 (0.737) was similar to that of DRS_FEV1 (0.732) and higher than that of DRS_Rrs5 (0.668). The area under the ROC curves in order of greater value was as follows: absolute change of Xrs5 (Abs_Xrs5 ) (0.759) > percent change of FEV1 (Pch_FEV1 ) (0.735) > Pch_Xrs5 (0.727) > Abs_Rrs5 (0.690) > Pch_Rrs5 (0.630). PC78 _Xrs5 and PC0.17 _Xrs5 of IOS showed considerably good sensitivity and specificity comparable to those of PC20 _FEV1 by spirometry. Additional 18 (13%) children who showed normal spirometric measures were identified as asthmatics with the use of IOS. CONCLUSION: The utility of the DRS_Xrs5 to differentiate asthmatics from controls was comparable to that of the DRS_FEV1 and better than that of the DRS_Rrs5 . In addition, IOS could detect additional asthmatic patients who did not show positive responses in spirometry.


Subject(s)
Asthma/diagnosis , Bronchial Hyperreactivity/diagnosis , Bronchial Provocation Tests/methods , Bronchoconstrictor Agents , Methacholine Chloride , Oscillometry/methods , Adolescent , Biomarkers , Case-Control Studies , Child , Child, Preschool , Diagnosis, Differential , Dose-Response Relationship, Drug , Female , Humans , Male , ROC Curve , Sensitivity and Specificity , Spirometry/methods
2.
Korean J Pediatr ; 54(2): 64-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21503199

ABSTRACT

PURPOSE: The normal values for lung resistance and lung capacity of children, as determined by impulse oscillometry (IOS), are different for children of different ethnicities. However, reference values there is no available reference value for Korean preschool children have yet to be determined. The aim of the present study was to determine the normal ranges of IOS parameters in Korean preschool children. METHODS: A total of 133 healthy Korean preschool children were selected from 639 children (aged 3 to 6 years) who attended kindergarten in Seongnam, Gyeonggi province, Korea. Healthy children were defined according to the European Respiratory Society (ERS) criteria. All subjects underwent lung function tests using IOS. The relationships between IOS value (respiratory resistance (Rrs) and reactance (Xrs) at 5 and 10 Hz and resonance frequency (RF)) and age, height, and weight were analyzed by simple linear and multiple linear regression analyses. RESULTS: The IOS success rate was 89.5%, yielding data on 119 children. Linear regression identified height as the best predictor of Rrs and Xrs. Using stepwise multiple linear regressions based on age, height, and weight, we determined regression equations and coefficients of determination (R(2)) for boys (Rrs(5)=1.934-0.009×Height, R(2)=12.1%; Xrs(5)=0.774+0.006×Height-0.002×Age, R(2)=20.2% and for girls (Rrs(5)=2.201-0.012×Height, R(2)=18.2%; Xrs(5)=-0.674+0.004×Height, R(2)=10.5%). CONCLUSION: This study provides reference values for IOS measurements of normal Korean preschool children. These provide a basis for the diagnosis and monitoring of preschool children with a variety of respiratory diseases.

3.
Korean J Pediatr ; 53(10): 863-71, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21189956

ABSTRACT

The prevalence of pediatric obstructive sleep apnea syndrome (OSAS) is approximately 3% in children. Adenotonsillar hypertrophy is the most common cause of OSAS in children, and obesity, hypotonic neuromuscular diseases, and craniofacial anomalies are other major risk factors. Snoring is the most common presenting complaint in children with OSAS, but the clinical presentation varies according to age. Agitated sleep with frequent postural changes, excessive sweating, or abnormal sleep positions such as hyperextension of neck or abnormal prone position may suggest a sleep-disordered breathing. Night terror, sleepwalking, and enuresis are frequently associated, during slow-wave sleep, with sleep-disordered breathing. Excessive daytime sleepiness becomes apparent in older children, whereas hyperactivity or inattention is usually predominant in younger children. Morning headache and poor appetite may also be present. As the cortical arousal threshold is higher in children, arousals are not easily developed and their sleep architectures are usually more conserved than those of adults. Untreated OSAS in children may result in various problems such as cognitive deficits, attention deficit/hyperactivity disorder, poor academic achievement, and emotional instability. Mild pulmonary hypertension is not uncommon. Rarely, cardiovascular complications such as cor pulmonale, heart failure, and systemic hypertension may develop in untreated cases. Failure to thrive and delayed development are serious problems in younger children with OSAS. Diagnosis of pediatric OSAS should be based on snoring, relevant history of sleep disruption, findings of any narrow or collapsible portions of upper airway, and confirmed by polysomnography. Early diagnosis of pediatric OSAS is critical to prevent complications with appropriate interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...