Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897889

ABSTRACT

Plant-parasitic nematodes infect a diversity of crops, resulting in severe economic losses in agriculture. Microbial volatile organic compounds (VOCs) are potential agents to control plant-parasitic nematodes and other pests. In this study, VOCs emitted by a dozen bacterial strains were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry. Fumigant toxicity of selected VOCs, including dimethyl disulfide (DMDS), 2-butanone, 2-pentanone, 2-nonanone, 2-undecanone, anisole, 2,5-dimethylfuran, glyoxylic acid, and S-methyl thioacetate (MTA) was then tested against Caenorhabditis elegans. DMDS and MTA exhibited much stronger fumigant toxicity than the others. Probit analysis suggested that the values of LC50 were 8.57 and 1.43 µg/cm3 air for DMDS and MTA, respectively. MTA also showed stronger fumigant toxicity than DMDS against the root-knot nematode Meloidogyne incognita, suggesting the application potential of MTA.


Subject(s)
Pesticides , Tylenchoidea , Volatile Organic Compounds , Animals , Bacteria , Caenorhabditis elegans , Crops, Agricultural , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology
2.
J Fungi (Basel) ; 6(4)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371239

ABSTRACT

Successive cultivation of fungi on artificial media has been reported to cause the sectorization, which leads to degeneration of developmental phenotype, and virulence. Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt, forms degenerated sectors after successive cultivation. In the present research, we demonstrated that subculture with aged mycelia increased the incidence of degenerations. To further investigate the differences between the Fon wild type (sporodochial type, ST) and variants (MT: mycelial type and PT: pionnotal type), developmental phenotypes and pathogenicity to watermelon were examined. Results in variants (PT2, PT3, PT11, and MT6) were different from ST with mycelia growth, conidia production and chlamydospore formation. Virulence of degenerated variants on susceptible watermelon Grand Baby (GB) cultivar was determined after inoculation with Fon variants and Fon ST. In root dipping methods, Fon variants showed no significant differences in disease progress compared with ST. Fon variants showed a significant decrease in disease progression compared with ST through infested soil inoculation. The contrasting results of two inoculation methods suggest that the degenerative changes due to repeated successive cultivation may lead to the loss of pathogen virulence-related factors of the early stage of Fon infection process. Therefore, cell wall-degrading enzymes (CWDEs; cellulase, pectinase, and xylanase) activities of different variants were analyzed. All Fon degenerated variants demonstrated significant decreases of CWDEs activities compared with ST. Additionally, transcript levels of 9 virulence-related genes (fmk1, fgb1, pacC, xlnR, pl1, rho1, gas1, wc1, and fow1) were assessed in normal state. The degenerated variants demonstrated a significantly low level of tested virulence-related gene transcripts except for fmk1, xlnR, and fow1. In summary, the degeneration of Fon is triggered with successive subculture through aged mycelia. The degeneration showed significant impacts on virulence to watermelon, which was correlated with the reduction of CWDEs activities and declining expression of a set of virulence-related genes.

3.
ACS Appl Bio Mater ; 2(11): 4978-4985, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-35021497

ABSTRACT

Nanotechnology has attracted much attention recently because of its agricultural applications. In this study, we analyzed the ability of two potential nanomaterials (NMs), nanoscale silica platelets (NSP) and silver nanoparticles on nanoscale silica platelets (AgNP/NSP), to control Fusarium wilt [caused by Fusarium oxysporum f. sp. niveum (Fon)] disease in watermelon. Both AgNP/NSP and NSP significantly reduced Fon mycelial growth and spore viability. In addition, AgNP/NSP decreased the mycelium viability at concentrations of 150 and 200 ppm. Scanning and transmission electron microscopy showed significant morphological effects on Fon cells, such as increased roughness and interior hollowing after AgNP/NSP and NSP treatments. Further, fluorescence staining experiments showed that a concomitant increase in membrane permeability occurred after treatment with NMs. The biochemical effects of NM treatment included a significant reduction in secreted cellulase activity. Interestingly, the addition of cysteine as a reducing agent decreased effects of NSP on Fon spores, suggesting suppression of Fon spore development attributable to oxidative stress. Taken together, these results indicate that AgNP/NSP and NSP may potentially serve as nanofungicides for future control of Fusarium wilt and other fungal diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...