Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 61(15): 1554-1560, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35852986

ABSTRACT

Telomeres are essential chromosome end capping structures that safeguard the genome from dangerous DNA processing events. DNA strand invasion occurs during vital transactions at telomeres, including telomere length maintenance by the alternative lengthening of telomeres (ALT) pathway. During telomeric strand invasion, a single-stranded guanine-rich (G-rich) DNA invades at a complementary duplex telomere repeat sequence, forming a displacement loop (D-loop) in which the displaced DNA consists of the same G-rich sequence as the invading single-stranded DNA. Single-stranded G-rich telomeric DNA readily folds into stable, compact, structures called G-quadruplexes (GQs) in vitro and is anticipated to form within the context of a D-loop; however, evidence supporting this hypothesis is lacking. Here, we report a magnetic tweezers assay that permits the controlled formation of telomeric D-loops (TDLs) within uninterrupted duplex human telomere DNA molecules of physiologically relevant lengths. Our results are consistent with a model wherein the displaced single-stranded DNA of a TDL fold into a GQ. This study provides new insight into telomere structure and establishes a framework for the development of novel therapeutics designed to target GQs at telomeres in cancer cells.


Subject(s)
DNA, Single-Stranded , G-Quadruplexes , DNA/chemistry , DNA Replication , Guanine , Humans , Telomere/genetics
2.
Proc Natl Acad Sci U S A ; 116(19): 9350-9359, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31019071

ABSTRACT

Telomerase reverse transcribes short guanine (G)-rich DNA repeat sequences from its internal RNA template to maintain telomere length. G-rich telomere DNA repeats readily fold into G-quadruplex (GQ) structures in vitro, and the presence of GQ-prone sequences throughout the genome introduces challenges to replication in vivo. Using a combination of ensemble and single-molecule telomerase assays, we discovered that GQ folding of the nascent DNA product during processive addition of multiple telomere repeats modulates the kinetics of telomerase catalysis and dissociation. Telomerase reactions performed with telomere DNA primers of varying sequence or using GQ-stabilizing K+ versus GQ-destabilizing Li+ salts yielded changes in DNA product profiles consistent with formation of GQ structures within the telomerase-DNA complex. Addition of the telomerase processivity factor POT1-TPP1 altered the DNA product profile, but was not sufficient to recover full activity in the presence of Li+ cations. This result suggests GQ folding synergizes with POT1-TPP1 to support telomerase function. Single-molecule Förster resonance energy transfer experiments reveal complex DNA structural dynamics during real-time catalysis in the presence of K+ but not Li+, supporting the notion of nascent product folding within the active telomerase complex. To explain the observed distributions of telomere products, we globally fit telomerase time-series data to a kinetic model that converges to a set of rate constants describing each successive telomere repeat addition cycle. Our results highlight the potential influence of the intrinsic folding properties of telomere DNA during telomerase catalysis, and provide a detailed characterization of GQ modulation of polymerase function.


Subject(s)
DNA/chemistry , Telomerase/metabolism , Telomere/metabolism , DNA/genetics , DNA/metabolism , DNA Primers/genetics , DNA Primers/metabolism , Fluorescence Resonance Energy Transfer , G-Quadruplexes , Humans , Kinetics , Shelterin Complex , Telomerase/chemistry , Telomerase/genetics , Telomere/chemistry , Telomere/genetics , Telomere-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...