Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(49): 27526-38, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26600097

ABSTRACT

An electron field emitter with superior electron field emission (EFE) properties and improved lifetime stability is being demonstrated via the combination of carbon nanotubes and the CH4/N2 plasma grown ultrananocrystalline diamond (N-UNCD) films. The resistance of the carbon nanotubes to plasma ion bombardment is improved by the formation of carbon nanocones on the side walls of the carbon nanotubes, thus forming strengthened carbon nanotubes (s-CNTs). The N-UNCD films can thus be grown on s-CNTs, forming N-UNCD/s-CNTs carbon nanocomposite materials. The N-UNCD/s-CNTs films possess good conductivity of σ = 237 S/cm and marvelous EFE properties, such as low turn-on field of (E0) = 3.58 V/µm with large EFE current density of (J(e)) = 1.86 mA/cm(2) at an applied field of 6.0 V/µm. Moreover, the EFE emitters can be operated under 0.19 mA/cm(2) for more than 350 min without showing any sign of degradation. Such a superior EFE property along with high robustness characteristic of these combination of materials are not attainable with neither N-UNCD films nor s-CNTs films alone. Transmission electron microscopic investigations indicated that the N-UNCD films contain needle-like diamond grains encased in a few layers of nanographitic phase, which enhanced markedly the transport of electrons in the N-UNCD films. Moreover, the needle-like diamond grains were nucleated from the s-CNTs without the necessity of forming the interlayer that facilitate the transport of electrons crossing the diamond-to-Si interface. Both these factors contributed to the enhanced EFE behavior of the N-UNCD/s-CNTs films.

2.
ACS Appl Mater Interfaces ; 7(14): 7732-40, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25793425

ABSTRACT

We improved the electron field emission properties of ultrananocrystalline diamond (UNCD) films grown on Si-tip arrays by using the carbon nanotubes (CNTs) as interlayer and post-treating the films in CH4/Ar/H2 plasma. The use of CNTs interlayer effectively suppresses the presence of amorphous carbon in the diamond-to-Si interface that enhances the transport of electrons from Si, across the interface, to diamond. The post-treatment process results in hybrid-granular-structured diamond (HiD) films via the induction of the coalescence of the ultrasmall grains in these films that enhanced the conductivity of the films. All these factors contribute toward the enhancement of the electron field emission (EFE) process for the HiDCNT/Si-tip emitters, with low turn-on field of E0 = 2.98 V/µm and a large current density of 1.68 mA/cm(2) at an applied field of 5.0 V/µm. The EFE lifetime stability under an operation current of 6.5 µA was improved substantially to τHiD/CNT/Si-tip = 365 min. Interestingly, these HiDCNT/Si-tip materials also show enhanced plasma illumination behavior, as well as improved robustness against plasma ion bombardment when they are used as the cathode for microplasma devices. The study concludes that the use of CNT interlayers not only increase the potential of these materials as good EFE emitters, but also prove themselves to be good microplasma devices with improved performance.

3.
ACS Appl Mater Interfaces ; 6(14): 11589-97, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24955653

ABSTRACT

The enhanced lifetime stability for the carbon nanotubes (CNTs) by coating hybrid granular structured diamond (HiD) films on Au-decorated CNTs/Si using a two-step microwave plasma enhanced chemical vapor deposition process was reported. Electron field emission (EFE) properties of HiD/Au/CNTs emitters show a low turn-on field (E0) of 3.50 V/µm and a high emission current density (Je) of 0.64 mA/cm(2) at an applied field of 5.0 V/µm. There is no notable current degradation or fluctuation over a period of τ(HiD/Au/CNTs) = 360 min for HiD/CNTs EFE emitters tested under a constant current of 4.5 µA. The robustness of the HiD/CNTs EFE emitter is overwhelmingly superior to that of bare CNTs EFE emitters (τ(CNTs) = 30 min), even though the HiD/Au/CNTs do not show the same good EFE properties as CNTs, which are E0 = 0.73 V/µm and Je = 1.10 mA/cm(2) at 1.05 V/µm. Furthermore, the plasma illumination (PI) property of a parallel-plate microplasma device fabricated using the HiD/Au/CNTs as a cathode shows a high Ar plasma current density of 1.76 mA/cm(2) at an applied field of 5600 V/cm with a lifetime of plasma stability of about 209 min, which is markedly better than the devices utilizing bare CNTs as a cathode. The CNT emitters coated with diamond films possessing marvelous EFE and PI properties with improved lifetime stability have great potential for the applications as cathodes in flat-panel displays and microplasma display devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...