Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 223: 105824, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309307

ABSTRACT

Coxsackievirus B3 (CVB3), one serotype of enteroviruses, can induce fatal myocarditis and hepatitis in neonates, but both treatment and vaccine are unavailable. Few reports tested antivirals to reduce CVB3. Several antivirals were developed against other enterovirus serotypes, but these antivirals failed in clinical trials due to side effects and drug resistance. Repurposing of clinical drugs targeting cellular factors, which enhance viral replication, may be another option. Parasite and cancer studies showed that the cellular protein kinase B (Akt) decreases interferon (IFN), apoptosis, and interleukin (IL)-6-induced STAT3 responses, which suppress CVB3 replication. Furthermore, miltefosine, the Akt inhibitor used in the clinic for parasite infections, enhances IL-6, IFN, and apoptosis responses in treated patients, suggesting that miltefosine could be the potential antiviral for CVB3. This study was therefore designated to test the antiviral effects of miltefosine against CVB3 in vitro and especially, in mice, as few studies test miltefosine in vitro, but not in vivo. In vitro results showed that miltefosine inhibited viral replication with enhanced activation of the cellular transcription factor, STAT3, which is reported to reduce CVB3 both in vitro and in mice. Notably, STAT3 knockdown abolished the anti-CVB3 activity of miltefosine in vitro. Mouse studies demonstrated that miltefosine pretreatment reduced CVB3 lethality of mice with decreased virus loads, organ damage, and apoptosis, but enhanced STAT3 activation. Miltefosine could be prophylaxis for CVB3 by targeting Akt to enhance STAT3 activation in the mechanism, which is independent of IFN responses and hardly reported in pathogen infections.


Subject(s)
Enterovirus Infections , Phosphorylcholine/analogs & derivatives , STAT3 Transcription Factor , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt , Apoptosis , Antigens, Viral , Enterovirus Infections/drug therapy , Interleukin-6 , Antiviral Agents/pharmacology
2.
Virology ; 464-465: 218-227, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25104614

ABSTRACT

Enterovirus 71 (EV71) infection can induce encephalitis. Overt immune responses is suspected to cause severe symptoms, so anti-inflammatory agents, corticosteroids have been recommended for treatment. However, one clinical study reported that treatment with glucocorticoids, dexamethasone (Dex) exacerbates disease severity. Here we investigated Dex treatment on EV71 infection using the murine model and found that both long-term (14-day) and short-term (4-day) Dex treatment starting from 1 or 3 days postinfection increased the mortality and disease severity of infected mice. Dex treatment starting from 4 or 8 days postinfection did not affect mouse mortality and disease severity. Early Dex treatment starting from 1 day postinfection caused atrophy and enhanced apoptosis in lymphoid organs to decrease the numbers of lymphocytes (CD4(+) T cells, CD8(+) T cells, and CD19(+) B cells) and to increase viral loads in infected tissues of mice. Our results demonstrate that Dex treatment has no beneficial effect on EV71 infection.


Subject(s)
Anti-Inflammatory Agents/adverse effects , Dexamethasone/adverse effects , Enterovirus A, Human/drug effects , Enterovirus Infections/drug therapy , Animals , Anti-Inflammatory Agents/administration & dosage , Apoptosis/drug effects , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Dexamethasone/administration & dosage , Enterovirus A, Human/physiology , Enterovirus Infections/mortality , Enterovirus Infections/physiopathology , Enterovirus Infections/virology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Viral Load
3.
Clin Dev Immunol ; 2012: 580696, 2012.
Article in English | MEDLINE | ID: mdl-23133489

ABSTRACT

Enterovirus 71 (EV71) has induced fatal encephalitis in hundreds of thousands of infants and young children in the Asia-Pacific region since the past decade. Lymphocyte and antibody responses have been suspected to aggravate EV71-induced neurological symptoms, so anti-inflammatory agents have been used to treat patients with neurological symptoms. In the present study, we found that mice deficient in CD4(+) T cells were resistant to EV71 infection as wild-type mice, whereas mice deficient in B cells were highly susceptible to viral infection. Compensation of CD4 T-cell function by other immune cells was not likely, because wild-type mice depleted of CD4(+) T cells were also resistant to viral infection. Infected CD4 T-cell-deficient mice produced virus-specific neutralizing antibodies, IgM and IgG. Moreover, adoptive transfer of the virus-specific antibody produced by infected CD4 T-cell-deficient mice protected B-cell-deficient mice from infection by reducing tissue viral loads. Collectively, our results show that the CD4 T-cell-independent antibody response promotes the survival of EV71-infected mice and suggest great potential for the use of vaccines and neutralizing antibodies to reduce fatal symptoms in patients.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , Enterovirus A, Human/immunology , Enterovirus Infections/immunology , Enterovirus Infections/virology , Animals , Antibodies, Neutralizing/biosynthesis , Antibody Formation/immunology , B-Lymphocytes/immunology , Cell Line , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Mice , Mice, Inbred C57BL , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...