Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 47(4): 1084-1098, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38037476

ABSTRACT

Beneficial Bacillus subtilis (BS) symbiosis could combat root pathogenesis, but it relies on root-secreted sugars. Understanding the molecular control of sugar flux during colonization would benefit biocontrol applications. The SWEET (Sugar Will Eventually Be Exported Transporter) uniporter regulates microbe-induced sugar secretion from roots; thus, its homologs may modulate sugar distribution upon BS colonization. Quantitative polymerase chain reaction revealed that gene transcripts of SWEET2, but not SWEET16 and 17, were significantly induced in seedling roots after 12 h of BS inoculation. Particularly, SWEET2-ß-glucuronidase fusion proteins accumulated in the apical mature zone where BS abundantly colonized. Yet, enhanced BS colonization in sweet2 mutant roots suggested a specific role for SWEET2 to constrain BS propagation, probably by limiting hexose secretion. By employing yeast one-hybrid screening and ectopic expression in Arabidopsis protoplasts, the transcription factor AHL29 was identified to function as a repressor of SWEET2 expression through the AT-hook motif. Repression occurred despite immunity signals. Additionally, enhanced SWEET2 expression and reduced colonies were specifically detected in roots of BS-colonized ahl29 mutant. Taken together, we propose that BS colonization may activate repression of AHL29 on SWEET2 transcription that would be enhanced by immunity signals, thereby maintaining adequate sugar secretion for a beneficial Bacillus association.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacillus subtilis/metabolism , Plant Roots/metabolism , Saccharomyces cerevisiae/metabolism , Sugars/metabolism
2.
Plant Physiol ; 189(1): 344-359, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35166824

ABSTRACT

Pollen fertility is critical for successful fertilization and, accordingly, for crop yield. While sugar unloading affects the growth and development of all types of sink organs, the molecular nature of sugar import to tomato (Solanum lycopersicum) pollen is poorly understood. However, sugar will eventually be exported transporters (SWEETs) have been proposed to be involved in pollen development. Here, reverse transcription-quantitative polymerase chain reaction (PCR) revealed that SlSWEET5b was markedly expressed in flowers when compared to the remaining tomato SlSWEETs, particularly in the stamens of maturing flower buds undergoing mitosis. Distinct accumulation of SlSWEET5b-ß-glucuronidase activities was present in mature flower buds, especially in anther vascular and inner cells, symplasmic isolated microspores (pollen grains), and styles. The demonstration that SlSWEET5b-GFP fusion proteins are located in the plasma membrane supports the idea that the SlSWEET5b carrier functions in apoplasmic sugar translocation during pollen maturation. This is consistent with data from yeast complementation experiments and radiotracer uptake, showing that SlSWEET5b operates as a low-affinity hexose-specific passive facilitator, with a Km of ∼36 mM. Most importantly, RNAi-mediated suppression of SlSWEET5b expression resulted in shrunken nucleus-less pollen cells, impaired germination, and low seed yield. Moreover, stamens from SlSWEET5b-silenced tomato mutants showed significantly lower amounts of sucrose (Suc) and increased invertase activity, indicating reduced carbon supply and perturbed Suc homeostasis in these tissues. Taken together, our findings reveal the essential role of SlSWEET5b in mediating apoplasmic hexose import into phloem unloading cells and into developing pollen cells to support pollen mitosis and maturation in tomato flowers.


Subject(s)
Solanum lycopersicum , Flowers/genetics , Flowers/metabolism , Hexoses/metabolism , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen , Sucrose/metabolism
3.
Sci Rep ; 11(1): 1610, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33462252

ABSTRACT

Bright, discrete, thin auroral arcs are a typical form of auroras in nightside polar regions. Their light is produced by magnetospheric electrons, accelerated downward to obtain energies of several kilo electron volts by a quasi-static electric field. These electrons collide with and excite thermosphere atoms to higher energy states at altitude of ~ 100 km; relaxation from these states produces the auroral light. The electric potential accelerating the aurora-producing electrons has been reported to lie immediately above the ionosphere, at a few altitudes of thousand kilometres1. However, the highest altitude at which the precipitating electron is accelerated by the parallel potential drop is still unclear. Here, we show that active auroral arcs are powered by electrons accelerated at altitudes reaching greater than 30,000 km. We employ high-angular resolution electron observations achieved by the Arase satellite in the magnetosphere and optical observations of the aurora from a ground-based all-sky imager. Our observations of electron properties and dynamics resemble those of electron potential acceleration reported from low-altitude satellites except that the acceleration region is much higher than previously assumed. This shows that the dominant auroral acceleration region can extend far above a few thousand kilometres, well within the magnetospheric plasma proper, suggesting formation of the acceleration region by some unknown magnetospheric mechanisms.

4.
Quant Imaging Med Surg ; 10(3): 568-584, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32269918

ABSTRACT

BACKGROUND: The number of breast cancer patients has increased each year, and the demand for breast cancer detection has become quite large. There are many common breast cancer diagnostic tools. The latest automated whole breast ultrasound (ABUS) technology can obtain a complete breast tissue structure, which improves breast cancer detection technology. However, due to the large amount of ABUS image data, manual interpretation is time-consuming and labor-intensive. If there are lesions in multiple images, there may be some omissions. In addition, if further volume information or the three-dimensional shape of the lesion is needed for therapy, it is necessary to manually segment each lesion, which is inefficient for diagnosis. Therefore, automatic lesion segmentation for ABUS is an important issue for guiding therapy. METHODS: Due to the amount of speckle noise in an ultrasonic image and the low contrast of the lesion boundary, it is quite difficult to automatically segment the lesion. To address the above challenges, this study proposes an automated lesion segmentation algorithm. The architecture of the proposed algorithm can be divided into four parts: (I) volume of interest selection, (II) preprocessing, (III) segmentation, and (IV) visualization. A volume of interest (VOI) is automatically selected first via a three-dimensional level-set, and then the method uses anisotropic diffusion to address the speckled noise and intensity inhomogeneity correction to eliminate shadowing artifacts before the adaptive distance regularization level set method (DRLSE) conducts segmentation. Finally, the two-dimensional segmented images are reconstructed for visualization in the three-dimensional space. RESULTS: The ground truth is delineated by two radiologists with more than 10 years of experience in breast sonography. In this study, three performance assessments are carried out to evaluate the effectiveness of the proposed algorithm. The first assessment is the similarity measurement. The second assessment is the comparison of the results of the proposed algorithm and the Chan-Vese level set method. The third assessment is the volume estimation of phantom cases. In this study, in the 2D validation of the first assessment, the area Dice similarity coefficients of the real cases named cases A, real cases B and phantoms are 0.84±0.02, 0.86±0.03 and 0.92±0.02, respectively. The overlap fraction (OF) and overlap value (OV) of the real cases A are 0.84±0.06 and 0.78±0.04, real case B are 0.91±0.04 and 0.82±0.05, respectively. The overlap fraction (OF) and overlap value (OV) of the phantoms are 0.95±0.02 and 0.92±0.03, respectively. In the 3D validation, the volume Dice similarity coefficients of the real cases A, real cases B and phantoms are 0.85±0.02, 0.89±0.04 and 0.94±0.02, respectively. The overlap fraction (OF) and overlap value (OV) of the real cases A are 0.82±0.06 and 0.79±0.04, real cases B are 0.92±0.04 and 0.85±0.07, respectively. The overlap fraction (OF) and overlap value (OV) of the phantoms are 0.95±0.01 and 0.93±0.04, respectively. Therefore, the proposed algorithm is highly reliable in most cases. In the second assessment, compared with Chan-Vese level set method, the Dice of the proposed algorithm in real cases A, real cases B and phantoms are 0.84±0.02, 0.86±0.03 and 0.92±0.02, respectively. The Dice of Chan-Vese level set in real cases A, real cases B and phantoms are 0.65±0.23, 0.69±0.14 and 0.76±0.14, respectively. The Dice performance of different methods on segmentation shows a highly significant impact (P<0.01). The results show that the proposed algorithm is more accurate than Chan-Vese level set method. In the third assessment, the Spearman's correlation coefficient between the segmented volumes and the corresponding ground truth volumes is ρ=0.929 (P=0.01). CONCLUSIONS: In summary, the proposed method can batch process ABUS images, segment lesions, calculate their volumes and visualize lesions to facilitate observation by radiologists and physicians.

5.
Sci Rep ; 8(1): 6159, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29670156

ABSTRACT

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to diagnose breast disease. Obtaining anatomical information from DCE-MRI requires the skin be manually removed so that blood vessels and tumors can be clearly observed by physicians and radiologists; this requires considerable manpower and time. We develop an automated skin segmentation algorithm where the surface skin is removed rapidly and correctly. The rough skin area is segmented by the active contour model, and analyzed in segments according to the continuity of the skin thickness for accuracy. Blood vessels and mammary glands are retained, which remedies the defect of removing some blood vessels in active contours. After three-dimensional imaging, the DCE-MRIs without the skin can be used to see internal anatomical information for clinical applications. The research showed the Dice's coefficients of the 3D reconstructed images using the proposed algorithm and the active contour model for removing skins are 93.2% and 61.4%, respectively. The time performance of segmenting skins automatically is about 165 times faster than manually. The texture information of the tumors position with/without the skin is compared by the paired t-test yielded all p < 0.05, which suggested the proposed algorithm may enhance observability of tumors at the significance level of 0.05.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast/pathology , Image Enhancement , Magnetic Resonance Imaging , Skin/pathology , Algorithms , Contrast Media , Female , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods
6.
Earth Planets Space ; 67(1): 168, 2015.
Article in English | MEDLINE | ID: mdl-27656100

ABSTRACT

Wave-like substorm arc features in the aurora and Pi2 magnetic disturbances observed in the near-Earth plasma sheet are frequently, and sometimes simultaneously, observed around the substorm onset time. We perform statistical analyses of the THEMIS ASI auroral observations that show wave-like bright spot structure along the arc prior to substorm onset. The azimuthal mode number values of the wave-like substorm arcs are found to be in the range of ~100-240 and decrease with increasing geomagnetic latitude of the substorm auroral arc location. We suggest that the azimuthal mode number is likely related to the ion gyroradius and azimuthal wave number. We also perform correlation study of the pre-onset wave-like substorm arc features and Pi2 magnetic disturbances for substorm dipolarization events observed by THEMIS satellites during 2008-2009. The wave-like arc brightness structures on the substorm auroral arcs tend to move azimuthally westward, but with a few exceptions of eastward movement, during tens of seconds prior to the substorm onset. The movement of the wave-like arc brightness structure is linearly correlated with the phase velocity of the Pi2 δBy disturbances in the near-Earth plasma sheet region. The result suggests that the Pi2 transverse δBy disturbances are related to the intensifying wave-like substorm onset arcs. One plausible explanation of the observations is the kinetic ballooning instability, which has high azimuthal mode number due to the ion gyroradius effect and finite parallel electric field that accelerates electrons into the ionosphere to produce the wave-like arc structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...