Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Mol Oncol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750006

ABSTRACT

Bladder cancer poses a significant challenge to chemotherapy due to its resistance to cisplatin, especially at advanced stages. Understanding the mechanisms behind cisplatin resistance is crucial for improving cancer therapy. The enzyme glutathione S-transferase omega class 1 (GSTO1) is known to be involved in cisplatin resistance in colon cancer. This study focused on its role in cisplatin resistance in bladder cancer. Our analysis of protein expression in bladder cancer cells stimulated by secretions from tumor-associated macrophages (TAMs) showed a significant increase in GSTO1. This prompted further investigation into the role of GSTO1 in bladder cancer. We found a strong correlation between GSTO1 expression and cisplatin resistance. Mechanistically, GSTO1 triggered the release of large extracellular vesicles (EVs) that promoted cisplatin efflux, thereby reducing cisplatin-DNA adduct formation and enhancing cisplatin resistance. Inhibition of EV release effectively counteracted the cisplatin resistance associated with GSTO1. In conclusion, GSTO1-mediated EV release may contribute to cisplatin resistance caused by TAMs in bladder cancer. Strategies to target GSTO1 could potentially improve the efficacy of cisplatin in treating bladder cancer.

2.
Am J Cancer Res ; 14(4): 1850-1865, 2024.
Article in English | MEDLINE | ID: mdl-38726266

ABSTRACT

Chronic inflammation associated with lung cancers contributes to immunosuppressive tumor microenvironments, reducing CD8+ T-cell function and leading to poor patient outcomes. A disintegrin and metalloprotease domain 9 (ADAM9) promotes cancer progression. Here, we aim to elucidate the role of ADAM9 in the immunosuppressive tumor microenvironment. A bioinformatic analysis of TIMER2.0 was used to investigate the correlation of ADAM9 and to infiltrate immune cells in the human lung cancer database and mouse lung tumor samples. Flow cytometry, immunohistochemistry, and RNA sequencing (RNA-seq) were performed to investigate the ADAM9-mediated immunosuppressive microenvironment. The coculture system of lung cancer cells with immune cells, cytokine array assays, and proteomic approach was used to investigate the mechanism. By analyzing the human LUAD database and the mouse lung cancer models, we showed that ADAM9 was associated with the immunosuppressive microenvironment. Additionally, ADAM9 released IL6 protein from cancer cells to inhibit IL12p40 secretion from dendritic cells, therefore leading to dendritic cell dysfunction and further affecting T-cell functions. Proteomic analysis indicated that ADAM9 promoted cholesterol biosynthesis and increased IL6-STAT3 signaling. Mechanistically, ADAM9 reduced the protein stability of LDLR, resulting in reduced cholesterol uptake and induced cholesterol biosynthesis. Moreover, LDLR reduction enhanced IL6-STAT3 activation. We reveal that ADAM9 has a novel biological function that drives the immunosuppressive tumor microenvironment by linking lung cancer's metabolic and signaling axes. Thus, by targeting ADAM9 an innovative and promising therapeutic opportunity was indicated for regulating the immunosuppression of lung cancer.

3.
Cell Biosci ; 13(1): 210, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964389

ABSTRACT

BACKGROUND: To date, most countries lifted the restriction requirement and coexisted with SARS-CoV-2. Thus, dietary behavior for preventing SARS-CoV-2 infection becomes an interesting issue on a daily basis. Coffee consumption is connected with reduced COVID-19 risk and correlated to COVID-19 severity. However, the mechanisms of coffee for the reduction of COVID-19 risk are still unclear. RESULTS: Here, we identified that coffee can inhibit multiple variants of the SARS-CoV-2 infection by restraining the binding of the SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (ACE2), and reducing transmembrane serine protease 2 (TMPRSS2) and cathepsin L (CTSL) activity. Then, we used the method of "Here" (HRMS-exploring-recombination-examining) and found that isochlorogenic acid A, B, and C of coffee ingredients showed their potential to inhibit SARS-CoV-2 infection (inhibitory efficiency 43-54%). In addition, decaffeinated coffee still preserves inhibitory activity against SARS-CoV-2. Finally, in a human trial of 64 subjects, we identified that coffee consumption (approximately 1-2 cups/day) is sufficient to inhibit infection of multiple variants of SARS-CoV-2 entry, suggesting coffee could be a dietary strategy to prevent SARS-CoV2 infection. CONCLUSIONS: This study verified moderate coffee consumption, including decaffeination, can provide a new guideline for the prevention of SARS-CoV-2. Based on the results, we also suggest a coffee-drinking plan for people to prevent infection in the post-COVID-19 era.

4.
Biomedicines ; 11(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38001888

ABSTRACT

Taxanes, particularly docetaxel (DTX), has been widely used for combination therapy of head and neck squamous cell carcinoma (HNSCC). For locally advanced unresectable HNSCC, DTX combined with cisplatin and 5-fluorouracil as a revolutionary treatment revealed an advantage in the improvement of patient outcome. In addition, DTX plus immune check inhibitors (ICIs) showed low toxicity and an increased response of patients with recurrent or metastatic HNSCC (R/M HNSCC). Accumulated data indicate that taxanes not only function as antimitotics but also impair diverse oncogenic signalings, including angiogenesis, inflammatory response, ROS production, and apoptosis induction. However, despite an initial response, the development of resistance remains a major obstacle to treatment response. Taxane resistance could result from intrinsic mechanisms, such as enhanced DNA/RNA damage repair, increased drug efflux, and apoptosis inhibition, and extrinsic effects, such as angiogenesis and interactions between tumor cells and immune cells. This review provides an overview of taxanes therapy applied in different stages of HNSCC and describe the mechanisms of taxane resistance in HNSCC. Through a detailed understanding, the mechanisms of resistance may help in developing the potential therapeutic methods and the effective combination strategies to overcome drug resistance.

5.
Elife ; 122023 08 29.
Article in English | MEDLINE | ID: mdl-37642993

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic continues to infect people worldwide. While the vaccinated population has been increasing, the rising breakthrough infection persists in the vaccinated population. For living with the virus, the dietary guidelines to prevent virus infection are worthy of and timely to develop further. Tannic acid has been demonstrated to be an effective inhibitor of coronavirus and is under clinical trial. Here we found that two other members of the tannins family, oligomeric proanthocyanidins (OPCs) and punicalagin, are also potent inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with different mechanisms. OPCs and punicalagin showed inhibitory activity against omicron variants of SARS-CoV-2 infection. The water extractant of the grape seed was rich in OPCs and also exhibited the strongest inhibitory activities for viral entry of wild-type and other variants in vitro. Moreover, we evaluated the inhibitory activity of grape seed extractants (GSE) supplementation against SARS-CoV-2 viral entry in vivo and observed that serum samples from the healthy human subjects had suppressive activity against different variants of SARS-CoV-2 Vpp infection after taking GSE capsules. Our results suggest that natural tannins acted as potent inhibitors against SARS-CoV-2 infection, and GSE supplementation could serve as healthy food for infection prevention.


Since it first surfaced in late 2019, the COVID-19 pandemic has had a significant impact on people's lives. While several vaccines have been created, infections have not disappeared. This is largely due to new variants of the virus responsible for the disease (SARS-CoV-2) emerging, which current vaccines do not work as well against. Indeed, several reports suggest that protection from the omicron variant wanes as shortly as four to six months after vaccination. Therefore, other strategies are needed to reduce the risk of SARS-CoV-2 infections. In 2022, researchers discovered that tannic acid blocked two proteins that SARS-CoV-2 needs to enter and replicate inside human cells. Tannic acid is part of the tannin family, which includes natural molecules found in plant-based meals and beverages. Here, Chen et al. ­ including some of the researchers involved in the 2022 studies ­ set out to find whether two other tannins found in nature (OPCs and punicalagin) could also inhibit SARS-CoV-2. Chen et al. administered tannic acid, OPCs and punicalagin to human cells cultured in a laboratory that had been infected with SARS-CoV-2. This revealed that all three tannins suppress the activity of the same proteins required for viral entry and replication, but to varying degrees suggesting that they block SARS-CoV-2 infections via different mechanisms. The compounds were also able to inhibit different variants of the virus, including omicron, from infecting the lab-grown cells. Further experiments revealed that water extracted from seeded grapes, which contains high levels of OPCs, could also block SARS-CoV-2 entry in the cell culture system. To test this further, Chen et al. gave 18 healthy individuals capsules containing different concentrations of grape seed extract and collected samples of their serum. The serum samples suppressed entry of different variants of SARS-CoV-2 in the cell culture system, with serums from subjects that received the higher dose having the greatest effect. These findings suggest that naturally occurring tannins can suppress multiple variants of SARS-CoV-2 from entering and replicating in cells. Consuming supplements of grape seed extract could potentially reduce the risk of SARS-CoV-2 infections. However, further experiments, including clinical trials, are needed to test this possibility.


Subject(s)
COVID-19 , Proanthocyanidins , Humans , Tannins/pharmacology , SARS-CoV-2 , Proanthocyanidins/pharmacology , Antioxidants
6.
Am J Cancer Res ; 13(3): 1067-1081, 2023.
Article in English | MEDLINE | ID: mdl-37034222

ABSTRACT

Most breast cancers are estrogen receptor (ER)-positive, targeted by endocrine therapies, but chemoresistance remains a significant challenge in treating the disease. Altered intracellular metabolite has closely connected with the pathogenic process of breast cancer and drug resistance. Itaconate is an anti-inflammatory metabolite generated from converting cis-aconitate in the tricarboxylic acid (TCA) cycle by the immune response gene 1 (IRG1). However, the potential role of IRG1/Itaconate in the crosstalk of metabolic pathways and tumor development is currently unknown. We tested the hypothesis that IRG1/Itaconate controls metabolic homeostasis to modulate breast cancer cell growth. We showed that breast cancers harboring an IRG1 deletion displayed a worse prognosis than those without IRG1 deletion; approximately 70% of breast cancer with IRG1 deletion were ER-positive. There was no significant difference in the IRG1 copy number, mRNA, and protein levels between ER-positive and ER-negative breast cancer cell lines and breast tumors. Itaconate selectively inhibited ER-positive breast cancer cell growth via the blockade of DNA synthesis and the induction of apoptosis. Mechanistically, IRG1 overexpression led to decreased intermediate levels of glycolysis, the TCA cycle, and lipid metabolism to compromise the entire biomass and energy of the cell. Itaconate inhibited the enzymatic activity of succinate dehydrogenase (SDH) in the mitochondrial electron-transport chain, concomitant with reactive oxygen species (ROS) production and the decreased adenylate kinase (AK) activities, which, in turn, induced AMP-activated protein kinase (AMPK) activation to restore metabolic homeostasis. These results suggest a new regulatory pathway whereby IRG1/Itaconate controls metabolic homeostasis in ER-positive breast cancer cells, which may contribute to developing more efficacious therapeutic strategies for breast cancer.

7.
Am J Cancer Res ; 12(11): 5049-5061, 2022.
Article in English | MEDLINE | ID: mdl-36504903

ABSTRACT

Recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) represents an advanced stage of the disease and frequently shows resistance to these current treatments, including platinum chemotherapy, cetuximab plus chemotherapy, and checkpoint inhibitors. EGFR overexpression and TP53 mutation are the most frequent genetic changes in patients with HNSCC. On the basis of this genetic feature, we proposed a combinatorial treatment using the EGFR tyrosine kinase inhibitor osimertinib (AZD) and arsenic trioxide (ATO) for compassionate use. The patient obtained treatment response and progression-free survival for about six months. In vitro mechanical verifications showed that ATO and AZD combination (ATO/AZD) significantly increased intracellular ROS levels and DNA damage. Additionally, ATO/AZD decreases the expression and activity of breast cancer type 1 susceptibility protein (BRCA1) and polo-like kinase 1 (PLK1), thereby impairing Rad51 recruitment to DNA double-strand lesion for repair and may ultimately cause tumor cell death. In conclusion, this study provides a concrete experience and an alternate strategy of ATO/AZD therapy for patients with R/M HNSCC.

8.
JCI Insight ; 7(23)2022 12 08.
Article in English | MEDLINE | ID: mdl-36264639

ABSTRACT

Docetaxel (DTX) combined with cisplatin and 5-fluorouracil has been used as induction chemotherapy for head and neck squamous cell carcinoma (HNSCC). However, the development of acquired resistance remains a major obstacle to treatment response. Tumor-associated macrophages are associated with chemotherapeutic resistance. In the present study, increased infiltration of macrophages into the tumor microenvironment (TME) was significantly associated with shorter overall survival and increased resistance to chemotherapeutic drugs, particularly DTX, in patients with HNSCC. Macrophage coculture induced expression of intercellular adhesion molecule 1 (ICAM1), which promotes stemness and the formation of polyploid giant cancer cells, thereby reducing the efficacy of DTX. Both genetic silencing and pharmacological inhibition of ICAM1 sensitized HNSCC to DTX. Macrophage secretion of IL-1ß was found to induce tumor expression of ICAM1. IL-1ß neutralization and IL-1 receptor blockade reversed DTX resistance induced by macrophage coculture. IL-1ß activated superoxide dismutase 2 and inhibited catalase, thereby modulating intracellular levels of ROS and inducing ICAM1 expression. Arsenic trioxide (ATO) reduced macrophage infiltration into the TME and impaired IL-1ß secretion by macrophages. The combinatorial use of ATO enhanced the in vivo efficacy of DTX in a mouse model, which may provide a revolutionary approach to overcoming acquired therapeutic resistance in HNSCC.


Subject(s)
Docetaxel , Head and Neck Neoplasms , Intercellular Adhesion Molecule-1 , Interleukin-1beta , Squamous Cell Carcinoma of Head and Neck , Animals , Mice , Docetaxel/pharmacology , Docetaxel/therapeutic use , Head and Neck Neoplasms/drug therapy , Intercellular Adhesion Molecule-1/genetics , Macrophages , Squamous Cell Carcinoma of Head and Neck/drug therapy , Tumor Microenvironment , Humans , Interleukin-1beta/metabolism , Signal Transduction
9.
Nat Cancer ; 3(10): 1211-1227, 2022 10.
Article in English | MEDLINE | ID: mdl-36253486

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) inhibitors have demonstrated promising clinical activity in multiple cancers. However, resistance to PARP inhibitors remains a substantial clinical challenge. In the present study, we report that anaplastic lymphoma kinase (ALK) directly phosphorylates CDK9 at tyrosine-19 to promote homologous recombination (HR) repair and PARP inhibitor resistance. Phospho-CDK9-Tyr19 increases its kinase activity and nuclear localization to stabilize positive transcriptional elongation factor b and activate polymerase II-dependent transcription of HR-repair genes. Conversely, ALK inhibition increases ubiquitination and degradation of CDK9 by Skp2, an E3 ligase. Notably, combination of US Food and Drug Administration-approved ALK and PARP inhibitors markedly reduce tumor growth and improve survival of mice in PARP inhibitor-/platinum-resistant tumor xenograft models. Using human tumor biospecimens, we further demonstrate that phosphorylated ALK (p-ALK) expression is associated with resistance to PARP inhibitors and positively correlated with p-Tyr19-CDK9 expression. Together, our findings support a biomarker-driven, combinatorial treatment strategy involving ALK and PARP inhibitors to induce synthetic lethality in PARP inhibitor-/platinum-resistant tumors with high p-ALK-p-Tyr19-CDK9 expression.


Subject(s)
Anaplastic Lymphoma Kinase , Antineoplastic Agents , Breast Neoplasms , Cyclin-Dependent Kinase 9 , Animals , Female , Humans , Mice , Anaplastic Lymphoma Kinase/metabolism , Antineoplastic Agents/pharmacology , Biomarkers , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 9/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Positive Transcriptional Elongation Factor B , Tyrosine/chemistry , Tyrosine/metabolism , Ubiquitin-Protein Ligases/drug effects , Ubiquitin-Protein Ligases/metabolism , United States
10.
Int J Biol Sci ; 18(12): 4677-4689, 2022.
Article in English | MEDLINE | ID: mdl-35874948

ABSTRACT

In the current climate, many countries are in dire need of effective preventive methods to curb the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) pandemic. The purpose of this research is to screen and explore natural plant extracts that have the potential to against SARS-CoV-2 and provide alternative options for SARS-CoV-2 prevention and hand sanitizer or spray-like disinfectants. We first used Spike-ACE2 ELISA and TMPRSS2 fluorescence resonance energy transfer (FRET) assays to screen extracts from agricultural by-products from Taiwan with the potential to impede SARS-CoV-2 infection. Next, the SARS-CoV-2 pseudo-particles (Vpp) infection assay was tested to validate the effectiveness. We identified an extract from coffee leaf (Coffea Arabica), a natural plant that effectively inhibited wild-type SARS-CoV-2, and five Variants of Concern (Alpha, Beta, Gamma, Delta, and Omicron strain) from entering host cells. In an attempt to apply coffee leaf extract for hand sanitizer or spray-like disinfectants, we designed a skin-like gelatin membrane experiment. We showed that the high concentration of coffee leaf extract on the skin surface could block SARS-CoV-2 into cells more potently than 75% Ethanol, a standard disinfectant to inactivate SARS-CoV-2. Finally, LC-HRMS analysis was used to identify compounds such as caffeine, chlorogenic acid (CGA), quinic acid, and mangiferin that are associated with an anti-SARS-CoV-2 activity. Our results demonstrated that coffee leaf extract, an agricultural by-product effectively inhibits SARS-CoV-2 Vpp infection through an ACE2-dependent mechanism and may be utilized to develop products against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Coffea , Hand Sanitizers , Plant Extracts , Angiotensin-Converting Enzyme 2 , Coffea/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
J Food Biochem ; 46(10): e14354, 2022 10.
Article in English | MEDLINE | ID: mdl-35894128

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several vaccines against SARS-CoV-2 have been approved; however, variants of concern (VOCs) can evade vaccine protection. Therefore, developing small compound drugs that directly block the interaction between the viral spike glycoprotein and ACE2 is urgently needed to provide a complementary or alternative treatment for COVID-19 patients. We developed a viral infection assay to screen a library of approximately 126 small molecules and showed that peimine inhibits VOCs viral infections. In addition, a fluorescence resonance energy transfer (FRET) assay showed that peimine suppresses the interaction of spike and ACE2. Molecular docking analysis revealed that peimine exhibits a higher binding affinity for variant spike proteins and is able to form hydrogen bonds with N501Y in the spike protein. These results suggest that peimine, a compound isolated from Fritillaria, may be a potent inhibitor of SARS-CoV-2 variant infection. PRACTICAL APPLICATIONS: In this study, we identified a naturally derived compound of peimine, a major bioactive alkaloid extracted from Fritillaria, that could inhibit SARS-CoV-2 variants of concern (VOCs) viral infection in 293T/ACE2 and Calu-3 lung cells. In addition, peimine blocks viral entry through interruption of spike and ACE2 interaction. Moreover, molecular docking analysis demonstrates that peimine has a higher binding affinity on N501Y in the spike protein. Furthermore, we found that Fritillaria significantly inhibits SARS-CoV-2 viral infection. These results suggested that peimine and Fritillaria could be a potential functional drug and food for COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Cevanes , Angiotensin-Converting Enzyme 2/genetics , Binding Sites , COVID-19 Vaccines , Glycoproteins , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/chemistry , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/metabolism , Virus Internalization
12.
Cancer Res ; 82(11): 2185-2195, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35385574

ABSTRACT

Targeting immune checkpoints such as programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) has transformed cancer treatment, with durable clinical responses across a wide range of tumor types. However, a high percentage of patients fail to respond to anti-PD-1/PD-L1 treatment. A greater understanding of PD-L1 regulation is critical to improving the clinical response rate of PD-1/PD-L1 blockade. Here, we demonstrate that PD-L1 is phosphorylated and stabilized by casein kinase 2 (CK2) in cancer and dendritic cells (DC). Phosphorylation of PD-L1 at Thr285 and Thr290 by CK2 disrupted PD-L1 binding with speckle-type POZ protein, an adaptor protein of the cullin 3 (CUL3) ubiquitin E3 ligase complex, protecting PD-L1 from CUL3-mediated proteasomal degradation. Inhibition of CK2 decreased PD-L1 protein levels by promoting its degradation and resulted in the release of CD80 from DC to reactivate T-cell function. In a syngeneic mouse model, combined treatment with a CK2 inhibitor and an antibody against T-cell immunoglobulin mucin-3 (Tim-3) suppressed tumor growth and prolonged survival. These findings uncover a mechanism by which PD-L1 is regulated and suggest a potential antitumor treatment option to activate DC function by blocking the CK2-PD-L1 pathway and inhibiting Tim-3. SIGNIFICANCE: This work identifies a role for CK2 in immunosuppression by phosphorylation and stabilization of PD-L1, identifying CK2 inhibition as an immunotherapeutic approach for treating cancer.


Subject(s)
B7-H1 Antigen , Casein Kinase II , Neoplasms , Animals , Casein Kinase II/metabolism , Dendritic Cells/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Mice , Phosphorylation , Programmed Cell Death 1 Receptor/metabolism
13.
BMC Cancer ; 22(1): 169, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35168547

ABSTRACT

BACKGROUND: The treatment of recurrent or metastatic head and neck squamous-cell carcinoma (R/M HNSCC) remains challenging. Preclinical studies revealed that B cell depletion could modulate the microenvironment and overcome chemoresistance. We conducted a phase I study to evaluate the feasibility and safety of B cell depletion using the anti-CD20 antibody rituximab to treat HNSCC. METHODS: Ten patients were enrolled in two protocols. The first four patients treated using protocol 1 received rituximab 1000 mg on days -14 and -7, followed by gemcitabine/cisplatin every 3 weeks, and rituximab was administered every 6 months thereafter. Because of disease hyperprogression, protocol 1 was amended to protocol 2, which consisted of the concomitant administration of rituximab 375 mg/m2 and gemcitabine/cisplatin every 3 weeks. Another six patients were enrolled and treated using protocol 2. RESULTS: Three patients treated using protocol 1 exhibited rapid disease progression, and the remaining patient could not undergo evaluation after rituximab treatment. Conversely, no unpredicted harm was observed in the six patients treated using protocol 2. Among these patients, one achieved complete response, and two had partial responses. The disease-free durations in these patients were 7.0, 6.2, and 7.1 months, respectively. Immune cell analysis revealed a higher ratio of cytotoxic T cells to regulatory T cells in responders than in non-responders. CONCLUSIONS: B cell depletion using rituximab alone in patients with HNSCC can cause hyperprogressive disease. Contrarily, the co-administration of rituximab and cisplatin/gemcitabine was feasible and safe. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04361409 , 24 April 2020, retrospectively registered.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cisplatin/administration & dosage , Deoxycytidine/analogs & derivatives , Head and Neck Neoplasms/drug therapy , Rituximab/administration & dosage , Squamous Cell Carcinoma of Head and Neck/drug therapy , Adult , Deoxycytidine/administration & dosage , Disease-Free Survival , Drug Administration Schedule , Feasibility Studies , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Pilot Projects , Treatment Outcome , Gemcitabine
14.
Anticancer Res ; 42(2): 845-855, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35093882

ABSTRACT

BACKGROUND/AIM: The poor prognosis and chemoresistance of patients with triple-negative breast cancer (TNBC) urge the development of new therapeutic strategies. Snail mucus has shown its ability against inflammation, a process closely related to tumorigenesis, suggesting a potential anti-cancer activity. MATERIALS AND METHODS: The effect and mechanisms of snail mucus on cell viability were determined by IncuCyte Live-cell analysis and molecular biological methods. The anti-cancer fractions of snail mucus were isolated and identified by medium pressure liquid chromatography (MPLC) and nuclear magnetic resonance (NMR) spectrometry analysis. RESULTS: Snail mucus significantly decreased the viability of TNBC cells with relatively lower cytotoxicity to normal breast epithelial cells and enhanced their response to chemotherapy through activation of Fas signaling by suppressing nucleolin. Two peptide fractions have been identified as the anti-cancer ingredients of the snail mucus. CONCLUSION: Snail mucus can induce programmed cell death via the extrinsic apoptotic pathway and has therapeutic potential by achieving a chemo-sensitizing effect in TNBCs.


Subject(s)
Antineoplastic Agents/pharmacology , Mucus , Signal Transduction/drug effects , Snails , Triple Negative Breast Neoplasms/metabolism , fas Receptor/metabolism , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Humans , Mucus/chemistry , Mucus/metabolism , Snails/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
15.
Int J Biol Sci ; 17(14): 3898-3910, 2021.
Article in English | MEDLINE | ID: mdl-34671207

ABSTRACT

Hypoxia and angiogenesis play key roles in the pathogenesis of esophageal squamous cell carcinoma (ESCC), but regulators linking these two pathways to drive tumor progression remain elusive. Here we provide evidence of ADAM9's novel function in ESCC progression. Increasing expression of ADAM9 was correlated with poor clinical outcomes in ESCC patients. Suppression of ADAM9 function diminished ESCC cell migration and in vivo metastasis in ESCC xenograft mouse models. Using cellular fractionation and imaging, we found a fraction of ADAM9 was present in the nucleus and was uniquely associated with gene loci known to be linked to the angiogenesis pathway demonstrated by genome-wide ChIP-seq. Mechanistically, nuclear ADAM9, triggered by hypoxia-induced translocation, functions as a transcriptional repressor by binding to promoters of genes involved in the negative regulation of angiogenesis, and thereby promotes tumor angiogenesis in plasminogen/plasmin pathway. Moreover, ADAM9 suppresses plasminogen activator inhibitor-1 gene transcription by interacting with its transcription factors at the promoter. Our findings uncover a novel regulatory mechanism of ADAM9 as a transcriptional regulator in angiogenesis and highlight ADAM9 as a promising therapeutic target for ESCC treatment.


Subject(s)
ADAM Proteins/physiology , Esophageal Neoplasms/blood supply , Esophageal Squamous Cell Carcinoma/blood supply , Membrane Proteins/physiology , Neovascularization, Pathologic/physiopathology , Transcription Factors/physiology , Animals , Cell Movement , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , Mice, SCID , Neovascularization, Pathologic/genetics , Plasminogen Activator Inhibitor 1/genetics , Prognosis , Xenograft Model Antitumor Assays
16.
Viruses ; 13(5)2021 05 02.
Article in English | MEDLINE | ID: mdl-34063247

ABSTRACT

In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged to severely impact the global population, creating an unprecedented need for effective treatments. This study aims to investigate the potential of Scutellaria barbata D. Don (SB) as a treatment for SARS-CoV-2 infection through the inhibition of the proteases playing important functions in the infection by SARS-CoV-2. FRET assay was applied to investigate the inhibitory effects of SB on the two proteases involved in SARS-CoV-2 infection, Mpro and TMPRSS2. Additionally, to measure the potential effectiveness of SB treatment on infection inhibition, cellular models based on the Calu3 and VeroE6 cells and their TMPRSS2- expressing derivatives were assessed by viral pseudoparticles (Vpp) infection assays. The experimental approaches were conjugated with LC/MS analyses of the aqueous extracts of SB to identify the major constituent compounds, followed by a literature review to determine the potential active components of the inhibitory effects on protease activities. Our results showed that SB extracts inhibited the enzyme activities of Mpro and TMPRSS2. Furthermore, SB extracts effectively inhibited SARS-CoV-2 Vpp infection through a TMPRSS2-dependent mechanism. The aqueous extract analysis identified six major constituent compounds present in SB. Some of them have been known associated with inhibitory activities of TMPRSS2 or Mpro. Thus, SB may effectively prevent SARS-CoV-2 infection and replication through inhibiting Mpro and TMPRSS2 protease activities.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/metabolism , Plant Extracts/pharmacology , Serine Endopeptidases/metabolism , Animals , COVID-19/metabolism , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/drug effects , Humans , Lung/virology , Pandemics , Peptide Hydrolases , Peptidyl-Dipeptidase A/metabolism , Plant Extracts/metabolism , Proteolysis , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Scutellaria , Serine Endopeptidases/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
17.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652909

ABSTRACT

Hypopharyngeal squamous cell carcinoma (HSCC) is usually diagnosed at an advanced stage, leading to a poor prognosis. Even after improvement of surgical techniques, chemotherapy, and radiation technology, the survival rate of HSCC remains poor. Metformin, which is commonly used for type 2 diabetes mellitus (DM), has been suggested to reduce the risk of various cancer types. However, only a few clinical studies mentioned the relationship between metformin use and HSCC. Hence, the aim of this study was to elucidate the specific effect and mechanism of action of metformin in hypopharyngeal cancer. We first assessed whether metformin use has an effect on hypopharyngeal cancer patients with DM by conducting a retrospective cohort study. Our results showed that DM hypopharyngeal cancer patients who used metformin exhibited significantly better overall survival rates than that without metformin treatment. The cell-based analysis further indicated that metformin treatment regulated p38/JNK pathway to reduce Cyclin D1 and Bcl-2 expressions. In addition, metformin activated the pathways of AMPKα and MEK/ERK to phosphorylate p27(Thr198) and reduce mTOR phosphorylation in cells. These actions direct cells toward G1 cell cycle arrest, apoptosis, and autophagy. Our results, through combining a clinical cohort analysis with an in vitro study, demonstrate that metformin can be used for drug repositioning in the treatment of DM patients with hypopharyngeal cancer.

18.
Nat Commun ; 12(1): 832, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547304

ABSTRACT

The two T cell inhibitory receptors PD-1 and TIM-3 are co-expressed during exhausted T cell differentiation, and recent evidence suggests that their crosstalk regulates T cell exhaustion and immunotherapy efficacy; however, the molecular mechanism is unclear. Here we show that PD-1 contributes to the persistence of PD-1+TIM-3+ T cells by binding to the TIM-3 ligand galectin-9 (Gal-9) and attenuates Gal-9/TIM-3-induced cell death. Anti-Gal-9 therapy selectively expands intratumoral TIM-3+ cytotoxic CD8 T cells and immunosuppressive regulatory T cells (Treg cells). The combination of anti-Gal-9 and an agonistic antibody to the co-stimulatory receptor GITR (glucocorticoid-induced tumor necrosis factor receptor-related protein) that depletes Treg cells induces synergistic antitumor activity. Gal-9 expression and secretion are promoted by interferon ß and γ, and high Gal-9 expression correlates with poor prognosis in multiple human cancers. Our work uncovers a function for PD-1 in exhausted T cell survival and suggests Gal-9 as a promising target for immunotherapy.


Subject(s)
Adenocarcinoma/therapy , Colonic Neoplasms/therapy , Galectins/immunology , Gene Expression Regulation, Neoplastic/immunology , Glucocorticoid-Induced TNFR-Related Protein/immunology , Hepatitis A Virus Cellular Receptor 2/immunology , Programmed Cell Death 1 Receptor/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/mortality , Animals , Antibodies/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/mortality , Galectins/antagonists & inhibitors , Galectins/genetics , Glucocorticoid-Induced TNFR-Related Protein/agonists , Glucocorticoid-Induced TNFR-Related Protein/genetics , Hepatitis A Virus Cellular Receptor 2/genetics , Humans , Immunotherapy/methods , Jurkat Cells , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/mortality , Melanoma, Experimental/therapy , Mice , Mice, Inbred BALB C , Programmed Cell Death 1 Receptor/genetics , Protein Binding , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Skin Neoplasms/therapy , Survival Analysis , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
19.
Theranostics ; 10(24): 10925-10939, 2020.
Article in English | MEDLINE | ID: mdl-33042262

ABSTRACT

Rationale: Brain metastasis in patients with lung cancer is life-threatening. However, the molecular mechanism for this catastrophic disease remains elusive, and few druggable targets are available. Therefore, this study aimed to identify and characterize proteins that could be used as therapeutic targets. Methods: Proteomic analyses were conducted to identify differentially expressed membrane proteins between brain metastatic lung cancer cells and primary lung cancer cells. A neuronal growth-associated protein, brain acid soluble protein 1 (BASP1), was chosen for further investigation. The clinical relevance of BASP1 in lung adenocarcinoma was first assessed. Tyrosine kinase activity assays and in vitro and in vivo functional assays were conducted to explore the oncogenic mechanisms of BASP1. Results: The protein levels of BASP1 were positively associated with tumor progression and poor prognosis in patients with lung adenocarcinoma. Membrane-bound BASP1 increased EGFR signaling and stabilized EGFR proteins by facilitating their escape from the ubiquitin-proteasome pathway. Reciprocally, activation of EGFR recruited more BASP1 to the plasma membrane, generating a positive feedback loop between BASP1 and EGFR. Moreover, the synergistic therapeutic effects of EGFR tyrosine kinase inhibitor and arsenic trioxide led to a reduction in the level of BASP1 protein observed in lung cancer cells with acquired resistance to EGFR inhibitors. Conclusions: The reciprocal interaction between BASP1 and EGFR facilitates EGFR signaling in brain metastatic lung cancer. Targeting the newly identified BASP1-EGFR interaction could open new venues for lung cancer treatment.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Repressor Proteins/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/secondary , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Arsenic Trioxide/pharmacology , Arsenic Trioxide/therapeutic use , Brain/pathology , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/secondary , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Feedback, Physiological/drug effects , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Kaplan-Meier Estimate , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Mutation , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Prognosis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proteolysis/drug effects , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Signal Transduction/drug effects , Tissue Array Analysis , Xenograft Model Antitumor Assays
20.
Redox Biol ; 34: 101571, 2020 07.
Article in English | MEDLINE | ID: mdl-32446175

ABSTRACT

Recurrence and metastasis remain the major cause of cancer mortality. Even for early-stage lung cancer, adjuvant chemotherapy yields merely slight increase to patient survival. EF-hand domain-containing protein D2 (EFHD2) has recently been implicated in recurrence of patients with stage I lung adenocarcinoma. In this study, we investigated the correlation between EFHD2 and chemoresistance in non-small cell lung cancer (NSCLC). High expression of EFHD2 was significantly associated with poor overall survival of NSCLC patients with chemotherapy in in silica analysis. Ectopic EFHD2 overexpression increased cisplatin resistance, whereas EFHD2 knockdown improved chemoresponse. Mechanistically, EFHD2 induced the production of NADPH oxidase 4 (NOX4) and in turn the increase of intracellular reactive oxygen species (ROS), consequently activating membrane expression of the ATP-binding cassette subfamily C member 1 (ABCC1) for drug efflux. Non-steroidal anti-inflammatory drug (NSAID) ibuprofen suppressed EFHD2 expression by leading to the proteasomal and lysosomal degradation of EFHD2 through a cyclooxygenase (COX)-independent mechanism. Combining ibuprofen with cisplatin enhanced antitumor responsiveness in a murine xenograft model in comparison with the individual treatment. In conclusion, we demonstrate that EFHD2 promotes chemoresistance through the NOX4-ROS-ABCC1 axis and therefore developing EFHD2-targeting strategies may offer a new avenue to improve adjuvant chemotherapy of lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Calcium-Binding Proteins , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Multidrug Resistance-Associated Proteins , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...