Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Biosensors (Basel) ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38391993

ABSTRACT

To address the need for high-resolution imaging in lung nodule detection and overcome the limitations of the shallow imaging depth associated with high-frequency ultrasound and the complex structure of lung tissue, we successfully integrated 50 MHz ultrasound transducers with 18-gauge biopsy needles. Featuring a miniaturized size of 0.6 × 0.5 × 0.5 mm3, the 50 MHz micromachined 1-3 composite transducer was tested to perform mechanical scanning of a nodule within a lung-tissue-mimicking phantom in vitro. The high-frequency transducer demonstrated the ability to achieve imaging with an axial resolution of 30 µm for measuring nodule edges. Moreover, the integrated biopsy needle prototype exhibited high accuracy (1.74% discrepancy) in estimating nodule area compared to actual dimensions in vitro. These results underscore the promising potential of biopsy-needle-integrated transducers in enhancing the accuracy of endoscopic ultrasound-guided fine needle aspiration biopsy (EUS-FNA) for clinical applications.


Subject(s)
Endoscopic Ultrasound-Guided Fine Needle Aspiration , Transducers , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , Phantoms, Imaging
2.
Article in English | MEDLINE | ID: mdl-32324547

ABSTRACT

This article aims to develop a semi-noncontact stress-sensing system using a laser-generated ultrasound (LGU) wave assisted by candle soot nanoparticle (CSNP) composite. While the acoustoelastic effect is commonly targeted to measure the stress level, efforts to combine it with the LGU wave signal have been lacking due to weak signal intensity. In this study, the CSNP-based transducer is designed to potentiate the photoacoustic energy conversion. To demonstrate the wave propagation with the designed parameters, a numerical simulation was first conducted. The experimental results showed that a laser intensity of 6.5 mJ/cm2 was enough to generate the subsurface longitudinal (SSL) wave from the CSNP composite transducer. The normal beam projection is the most effective wave-generation method, exhibiting the highest signal magnitude compared with inclined projection cases. Finally, the laser-assisted stress-sensing system was assessed by increasing the internal pressure of an air tank. The sensitivity of the developed sensor system was estimated to be 0.296 ns/MPa, showing a correlation of 0.983 with the theoretical prediction. The proposed sensing system can be used to monitor the structural integrity of nuclear power plants.

3.
IEEE Nanotechnol Mag ; 13(3): 13-28, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31178946

ABSTRACT

This manuscript provides a review of candle-soot nanoparticle (CSNP) composite laser ultrasound transmitters (LUT), and compares and contrasts this technology to other carboncomposite designs. Among many carbon-based composite LUTs, a CSNP composite has shown its advantages of maximum energy conversion and fabrication simplicity for developing highly efficient ultrasound transmitters. This review focuses on the advantages and challenges of the CSNP-composite transmitter in the aspects of nanostructure design, fabrication procedure, and promising applications. Included are a brief description of the basic principles of the laser ultrasound transmitter, a review of general properties of CSNPs, as well as details on the fabrication method, photoacoustic performance, and design factors. A comparison of the CSNP-nanocomposite to other carbon-nanocomposites is provided. Lastly, representative applications of carbon-nanocomposite transmitters and future perspectives on CSNP-composite transmitters are presented.

4.
Sci Rep ; 7(1): 3454, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28615645

ABSTRACT

Effective removal or dissolution of large blood clots remains a challenge in clinical treatment of acute thrombo-occlusive diseases. Here we report the development of an intravascular microbubble-mediated sonothrombolysis device for improving thrombolytic rate and thus minimizing the required dose of thrombolytic drugs. We hypothesize that a sub-megahertz, forward-looking ultrasound transducer with an integrated microbubble injection tube is more advantageous for efficient thrombolysis by enhancing cavitation-induced microstreaming than the conventional high-frequency, side-looking, catheter-mounted transducers. We developed custom miniaturized transducers and demonstrated that these transducers are able to generate sufficient pressure to induce cavitation of lipid-shelled microbubble contrast agents. Our technology demonstrates a thrombolysis rate of 0.7 ± 0.15 percent mass loss/min in vitro without any use of thrombolytic drugs.


Subject(s)
Microbubbles , Thrombolytic Therapy/methods , Transducers , Ultrasonic Waves , Humans , Thrombolytic Therapy/instrumentation
5.
J Appl Phys ; 114(11): 114103, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-24170960

ABSTRACT

Effect of nano-patterned composite electrode and backswitching poling technique on dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 was studied in this paper. Composite electrode consists of Mn nano-patterns with pitch size of 200 nm, and a blanket layer of Ti/Au was fabricated using a nanolithography based lift-off process, heat treatment, and metal film sputtering. Composite electrode and backswitching poling resulted in 27% increase of d33 and 25% increase of dielectric constant, and we believe that this is attributed to regularly defined nano-domains and irreversible rhombohedral to monoclinic phase transition in crystal. The results indicate that nano-patterned composite electrode and backswitching poling has a great potential in domain engineering of relaxor single crystals for advanced devices.

6.
Phytochemistry ; 95: 315-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23838628

ABSTRACT

Torvpregnanosides A and B, two pregnane glycosides, and torvoside Q, a 23-keto-spirostanol glycoside, along with twelve known steroidal saponins were isolated from aerial parts of Solanum torvum. Of the latter, four of the 23-hydroxy-spirostanol glycosides, and, a yamogenin glycoside, were in this plant discovered. All structures were identified from spectroscopic data, and all the compounds were tested for in vitro anti-neutrophilic inflammatory activity. Two compounds showed selective inhibition against elastase release and superoxide anion generation, respectively, by human neutrophils with IC50 values of 5.66 and 3.59 µM, while two others inhibited both inflammatory mediators with IC50 values of 0.66-3.49 µM. Structure-activity relationships are discussed.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Glycosides/pharmacology , Neutrophils/metabolism , Phytosterols/pharmacology , Plant Extracts/pharmacology , Saponins/pharmacology , Solanum/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Inflammation Mediators/metabolism , Inhibitory Concentration 50 , Molecular Structure , Pancreatic Elastase/antagonists & inhibitors , Phytosterols/chemistry , Phytosterols/isolation & purification , Plant Components, Aerial , Plant Extracts/chemistry , Pregnanes/chemistry , Pregnanes/isolation & purification , Saponins/chemistry , Saponins/isolation & purification , Spirostans/chemistry , Spirostans/isolation & purification , Superoxides/metabolism
7.
Zhong Yao Cai ; 34(6): 845-8, 2011 Jun.
Article in Chinese | MEDLINE | ID: mdl-22016998

ABSTRACT

OBJECTIVE: To explore the morphological changes, growth conditions and artificial propagation of Hypericum ascyron. METHODS: The morphological changes were observed and recorded in the scene, the height and diameter of the plants were measured; the growth Verhaulst model was set up with the SPSS 17.0 software; the sexual reproduction and asexual reproduction were carried out in artificial cultivation. RESULTS: Hypericum ascyron started germinating in late April each year, branching in late May, flowering in late June, the period of full bearing was in early August, seeds were mature in early October. The Verhaulst models of the increase in the height (H), the quantity of leaf pairs (L) and the branching (B) were, H = 127.109/(1 + 23.744 x e(-0.062t)), L = 23.343/(1 + 11.303 x e(-0.062t)), B = 22.037/(1 + 73.068 x e(-0.068t)). The survival rate of whole graft and segmentation plant were 100% and 67.2% respectively on asexual reproduction; on the sexual reproduction, the seed germination rate was 15.2%, the survival rate of transplant seedlings was 36%. CONCLUSIONS: The period of growth and development of Hypericum ascyron is from April to October and it can be carried out artificial propagation.


Subject(s)
Culture Techniques/methods , Hypericum/growth & development , Plants, Medicinal/growth & development , Regeneration , Seedlings/growth & development , Ecosystem , Germination , Hypericum/anatomy & histology , Hypericum/physiology , Models, Theoretical , Plant Leaves/growth & development , Plant Stems/anatomy & histology , Plant Stems/growth & development , Plants, Medicinal/physiology , Reproduction, Asexual , Seeds/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...