Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 540(1): 110-6, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24583170

ABSTRACT

α-Tocopherol transfer protein (α-TTP) is a cytosolic protein that plays an important role in regulating concentrations of plasma α-tocopherol (the most bio-active form of vitamin E). Despite the central roles that α-TTP plays in maintaining vitamin E adequacy, we have only recently proved the existence of the α-TTP gene in sheep and, for the first time, cloned its full-length cDNA. However, the study of sheep α-TTP is still in its infancy. In the present study, thirty-five local male lambs of Tan sheep with similar initial body weight were randomly divided into five groups and fed with diets supplemented with 0 (control group), 20, 100, 200, 2000IU·sheep(-1)·d(-1) vitamin E for 120 days. At the end of the experiment, the plasma and liver vitamin E contents were analyzed first and then α-TTP mRNA and protein expression levels were determined by quantitative real-time PCR (qRT-PCR) and Western-blot analysis, respectively. In addition, as no sheep α-TTP antibody was available, a specific monoclonal antibody (McAb) against the ovine α-TTP protein was prepared. The effect of vitamin E supplementation was confirmed by the significant changes in the concentrations of vitamin E in the plasma and liver. As shown by qRT-PCR and Western-blot analysis, dietary vitamin E does not affect sheep α-TTP gene expression, except for high levels of vitamin E supplementation, which significantly increased expression at the protein level. Importantly, the specific sheep anti-α-TTP McAb we generated could provide optimal recognition in ELISA, Western-blot and immunohistochemistry assays, which will be a powerful tool in future studies of the biological functions of sheep α-TTP.


Subject(s)
Carrier Proteins/genetics , Sheep, Domestic/metabolism , Vitamin E/physiology , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Blotting, Western , Carrier Proteins/immunology , Carrier Proteins/metabolism , Dietary Supplements , Female , Gene Expression , Gene Expression Regulation , Hepatocytes/metabolism , Hybridomas , Immunohistochemistry , Liver/cytology , Liver/metabolism , Male , Mice, Inbred BALB C , Sheep, Domestic/genetics , Vitamin E/administration & dosage
2.
Gene ; 541(1): 1-7, 2014 May 10.
Article in English | MEDLINE | ID: mdl-24630963

ABSTRACT

The α-tocopherol transfer protein (α-TTP) is a ~32kDa cytosolic protein that plays an important role in the efficient circulation of plasma α-tocopherol in the body, a factor with great relevance in reproduction. The α-TTP gene has been studied in a number of tissues; however, its expression and function in some ovine tissues remain unclear. A previous study from our laboratory has demonstrated α-TTP expression in sheep liver. In the present study we determined whether α-TTP is expressed in non-liver tissues and investigated the effects of dietary vitamin E on the α-TTP mRNA levels. Thirty-five male Tan sheep with similar body weight were randomly allocated into five groups and supplemented 0, 20, 100, 200 and 2000IUsheep(-1)day(-1) vitamin E, for four months, respectively. At the end of the study, the animals were slaughtered and tissue samples from the heart, spleen, lung, kidney, longissimus dorsi muscle and gluteus muscle were immediately collected. We found that the α-TTP gene is expressed in sheep tissues other than the liver. Moreover, dietary vitamin E levels had influenced the expression levels of α-TTP gene in these tissues in a tissue-specific way. The technique of immunohistochemistry was used to detect α-TTP in tissues of the heart, spleen, lung, and kidney and we found that α-TTP was mainly located in the cytoplasm while no α-TTP immunoreactivity was detected in the cytoplasm of longissimus dorsi and gluteus muscle samples. Importantly, our findings lay the foundation for additional experiments focusing on the absorption and metabolism of vitamin E in tissues other than the liver.


Subject(s)
Carrier Proteins/metabolism , Dietary Supplements , Gene Expression Regulation/drug effects , RNA, Messenger/metabolism , Vitamin E/metabolism , Animal Nutrition Sciences , Animals , Cytoplasm/metabolism , Dose-Response Relationship, Drug , Immunohistochemistry , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Male , Muscles/metabolism , Myocardium/metabolism , Real-Time Polymerase Chain Reaction , Sheep , Spleen/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...