Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 815: 152499, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34968582

ABSTRACT

The performance, system stability, and microbial community response in anaerobic co-digestion (AcoD) of corn stover (CS) and chicken manure (CM) were investigated by running completely stirred tank reactor (CSTR) under controlled organic loading rate (OLR). Prior to anaerobic digestion (AD), potassium hydroxide (KOH) or liquid fraction of digestate (LFD) was applied to pretreat CS, respectively. The results showed that the daily biogas production (DBP) in co-digestion showed a gradual increasing trend with an increase in the OLR from 65 g TS·L-1 to 100 g TS·L-1. The daily methane production per g volatile solids (DMP-VS) in co-digestion increased by 23.0%-27.1%, 18.7%-18.8%, and 17.5%-18.0% at the OLRs of 65, 80, and 100 g TS·L-1, respectively, upon pretreatment with KOH or LFD, as compared to that in co-digestion CSTR without any pretreatment. In addition, all co-digestion CSTRs were operated in stable state. Approximately half of the total carbon in the substrates was recovered in the form of a biogas product, with the carbon mass balance being impacted by the OLR as well as pretreatment. The diversity as well as function of the microbial community varied in response to different OLRs and pretreatment methods. The majority of bacterial genera were strongly correlated with operational parameters. The study indicates that management of OLR and selection of proper pretreatment method could enhance the efficiency and productivity of CS and CM co-digestion in CSTR.


Subject(s)
Manure , Zea mays , Anaerobiosis , Animals , Biofuels , Bioreactors , Chickens , Digestion , Methane
2.
Polymers (Basel) ; 13(13)2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34279351

ABSTRACT

The corn stover (CS)'s compact structure makes it challenging for microorganisms to use in anaerobic digestion (AD). Therefore, improving CS biodegradability has become a key focus in AD studies. Methods are being targeted at the pretreatment of CS, combining advanced urea with mild temperature hydrotherm pretreatment to study its effect on promoting the AD process of CS. The biomethane yield, physicochemical structure, and microbial community characteristics were investigated. CS samples were assigned into groups differed by a range of pretreatment times (from 24 to 96 h) and set at a temperature of 50 °C with a 2% urea addition. Results revealed that the 72-h group obtained the highest biomethane yield of 205 mL/g VS-1, volatile solid (VS) and total solid (TS) removal rates of 69.3% and 47.7%, which were 36.7%, 25.3% and 27.5% higher than those of untreated one, respectively. After conducting several analyses, results confirmed the pretreatment as a method for altering CS microstructures benefits biomethane production. The most resounding differences between pretreated and untreated groups were observed within a microbial community, an integral factor for improved AD performance. This study serves to confirm that this specific pretreatment is an effective method for enhancing biomethane production in CS.

3.
Bioresour Technol ; 335: 125268, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34020157

ABSTRACT

Anaerobic dark fermentation (DF) performances of food waste (FW) were investigated using oyster shells. The different amount oyster shells(6%-12%(w/w)) were added to the DF system of FW. The result showed that the H2 production rate and cumulative H2 production improved after addition oyster shells. The highest H2 production rate and cumulative H2 production of 8% oyster shells addition group were 8.4 mL/(gVS·h) and 88.2 mL/gVS, which were 11.7%-30.6% and 17.4%-52.9% higher than those of the other test groups. TVFAs production, especially acetic and butyric acids improved after addition oyster shells. The highest TVFAs production was 19291.4 mg/L for 8% oyster shells added group, which was 90.24% higher than that of the unadded group. For 8% oyster shells added group, Lactobacillales, Gallicola, and Bacteroides were the dominant species at genus levels. Thus, the addition of an appropriate amount oyster shells could improve H2 production rate, cumulative H2 production, promote buffering capacity, enhance TVFAs production.


Subject(s)
Microbiota , Ostreidae , Refuse Disposal , Anaerobiosis , Animals , Bioreactors , Fermentation , Food , Hydrogen , Hydrogen-Ion Concentration
4.
Front Mol Neurosci ; 8: 52, 2015.
Article in English | MEDLINE | ID: mdl-26441515

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a recognized clinical entity characterized with cognitive deficits after anesthesia and surgery, especially in aged patients. Previous studies have shown that histone acetylation plays a key role in hippocampal synaptic plasticity and memory formation. However, its role in POCD remains to be determined. Here, we show that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, attenuates POCD in aging Mice. After exposed to the laparotomy, a surgical procedure involving an incision into abdominal walls to examine the abdominal organs, 16- but not 3-month old male C57BL/6 mice developed obvious cognitive impairments in the test of long-term contextual fear conditioning. Intracerebroventricular (i.c.v.) injection of SAHA at the dose of (20 µg/2 µl) 3 h before and daily after the laparotomy restored the laparotomy-induced reduction of hippocampal acetyl-H3 and acetyl-H4 levels and significantly attenuated the hippocampus-dependent long-term memory (LTM) impairments in 16-month old mice. SAHA also reduced the expression of cleaved caspase-3, inducible nitric oxide synthase (iNOS) and N-methyl-D-aspartate (NMDA) receptor-calcium/calmodulin dependent kinase II (CaMKII) pathway, and increased the expression of brain-derived neurotrophic factor (BDNF), synapsin 1, and postsynaptic density 95 (PSD95). Taken together, our data suggest that the decrease of histone acetylation contributes to POCD and may serve as a target to improve the neurological outcome of POCD.

SELECTION OF CITATIONS
SEARCH DETAIL
...