Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Mater Today Bio ; 26: 101104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952539

ABSTRACT

Clinical treatment of diabetic refractory ulcers is impeded by chronic inflammation and cell dysfunction associated with wound healing. The significant clinical application of bFGF in wound healing is limited by its instability in vivo. Sulfur has been applied for the treatment of skin diseases in the clinic for antibiosis. We previously found that sulfur incorporation improves the ability of selenium nanoparticles to accelerate wound healing, yet the toxicity of selenium still poses a risk for its clinical application. To obtain materials with high pro-regeneration activity and low toxicity, we explored the mechanism by which selenium-sulfur nanoparticles aid in wound healing via RNA-Seq and designed a nanoparticle called Nano-S@bFGF, which was constructed from sulfur and bFGF. As expected, Nano-S@bFGF not only regenerated zebrafish tail fins and promoted skin wound healing but also promoted skin repair in diabetic mice with a profitable safety profile. Mechanistically, Nano-S@bFGF successfully coactivated the FGFR and Hippo signalling pathways to regulate wound healing. Briefly, the Nano-S@bFGF reported here provides an efficient and feasible method for the synthesis of bioactive nanosulfur and bFGF. In the long term, our results reinvigorated efforts to discover more peculiar unique biofunctions of sulfur and bFGF in a great variety of human diseases.

2.
Cells ; 13(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891100

ABSTRACT

Pulmonary adenocarcinoma (PADC) treatment limited efficacy in preventing tumor progression, often resulting in malignant pleural effusion (MPE). MPE is filled with various mediators, especially interleukin-8 (IL-8). However, the role of IL-8 and its signaling mechanism within the fluid microenvironment (FME) implicated in tumor progression warrants further investigation. Primary cultured cells from samples of patients with MPE from PADC, along with a commonly utilized lung cancer cell line, were employed to examine the role of IL-8 and its receptor, CXCR1, through comparative analysis. Our study primarily assessed migration and invasion capabilities, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) properties. Additionally, IL-8 levels in MPE fluid versus serum, along with immunohistochemical expression of IL-8/CXCR1 signaling in tumor tissue and cell blocks were analyzed. IL-8/CXCR1 overexpression enhanced EMT and CSC properties. Furthermore, the immunocytochemical examination of 17 cell blocks from patients with PADC and MPE corroborated the significant correlation between upregulated IL-8 and CXCR1 expression and the co-expression of IL-8 and CXCR1 in MPE with distant metastasis. In summary, the IL-8/ CXCR1 axis in FME is pivotal to tumor promotion via paracrine and autocrine signaling. Our study provides a therapeutic avenue for improving the prognosis of PADC patients with MPE.


Subject(s)
Adenocarcinoma of Lung , Epithelial-Mesenchymal Transition , Interleukin-8 , Lung Neoplasms , Pleural Effusion, Malignant , Receptors, Interleukin-8A , Signal Transduction , Aged , Female , Humans , Male , Middle Aged , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/complications , Cell Line, Tumor , Cell Movement , Disease Progression , Interleukin-8/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Pleural Effusion, Malignant/pathology , Pleural Effusion, Malignant/metabolism , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8A/genetics , Tumor Microenvironment
3.
Mitochondrial DNA B Resour ; 9(6): 828-831, 2024.
Article in English | MEDLINE | ID: mdl-38919812

ABSTRACT

Homoneura picta belongs to the Homoneurinae subfamily of Lauxaniidae, and it is widely distributed and common in China. This study reports the newly sequenced mitochondrial genome of H. picta. The sequence is 15,469 bp long and contains 37 genes (13 protein-coding, 22 tRNA, and 2 rRNA genes) and a control region. The overall base composition is 38.4% for A, 37.7% for T, 14.1% for C, and 9.8% for G, with a bias toward A + T (76.1%). Phylogenetic analysis show that Homoneura is a sister genus of Cestrotus. We have successfully sequenced the mitochondrial genome of H. picta, which can be useful in investigating the phylogenetic status of Homoneurinae. Our results provide data for further studies of phylogeny in Diptera.

4.
J Hazard Mater ; 476: 134901, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38909462

ABSTRACT

Acesulfame potassium (ACK) was generally regarded as innocuous and extensively ingested. Nevertheless, ACK has recently gained attention as a burgeoning pollutant that has the potential to induce a range of health hazards, particularly to the digestive system. Herein, we uncover that ACK initiates inflammatory bowel disease (IBD) in mice and zebrafish, as indicated by the aggregation of macrophages in the intestine and the inhibition of intestinal mucus secretion. Transcriptome analysis of mice and zebrafish guts revealed that exposure to ACK typically impacts the cell cycle, focal adhesion, and PI3K-Akt signaling pathways. Using pharmacological approaches, we demonstrate that the PI3K-Akt signaling pathway and the generation of reactive oxygen species (ROS) triggered by cell division are not significant factors in the initiation of IBD caused by ACK. Remarkably, inhibition of the focal adhesion pathway is responsible for the IBD onset induced by ACK. Our results indicate the detrimental impacts and possible underlying mechanisms of ACK on the gastrointestinal system and provide insights for making informed choices about everyday dietary habits.

5.
J Craniomaxillofac Surg ; 52(7): 843-849, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729844

ABSTRACT

We explored the impact of stromal tumor-infiltrating lymphocytes (sTILs) on the prognostic value of an early death model for advanced buccal cancer. We assessed 121 patients with advanced buccal cancer who underwent primary tumor resection at a medical center. Predictors of early death and 5-year overall survival (OS) were analyzed using Cox regression models. Performance of models was evaluated with the Harrell C and Akaike information criterion. The net reclassification improvement of the early death model was also calculated relative to the 5-year OS model for one-year all-cause mortality. A total of 121 patients with advanced buccal cancer were recruited. Mean age was 56.1 ± 9.8 years; 117 (96.7%) patients were male. sTILs ≤30%, clinical nodal disease, pathological nodal disease, poor differentiation, lymphovascular invasion, perineural invasion, WPOI 5, and no adjuvant radiotherapy were risk factors for early death in univariate analysis. In multivariate analysis, clinical TNM, sTILs, clinical nodal disease, poor differentiation, lymphovascular invasion, and no adjuvant RT were independent factors for early death. sTILs, pathological nodal disease, poor differentiation, lymphovascular invasion, and no adjuvant RT were independent factors for early death in the multivariate model with pathological TNM. The discriminatory ability was better for early death model for 1-year all-cause mortality. Finally, incorporation of sTILs into the early death model increased net reclassification by 21% for the clinical TNM model and 28% for the pathological TNM model. Addition of sTILs improved the early death model, which may help physicians to identify high-risk patients for more intensive treatment and follow-up.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Mouth Neoplasms , Humans , Male , Middle Aged , Female , Lymphocytes, Tumor-Infiltrating/pathology , Mouth Neoplasms/pathology , Mouth Neoplasms/mortality , Prognosis , Neoplasm Staging , Neoplasm Invasiveness , Aged , Adult , Risk Factors , Retrospective Studies , Lymphatic Metastasis/pathology
6.
Eur J Surg Oncol ; 50(3): 108009, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342040

ABSTRACT

BACKGROUND: Recurrent oral cancer incurred grave outcome. Tumor microenvironment features, like tumor-infiltrating lymphocytes (TILs) or tumor stromal ratio (TSR) had prognostic significance in various cancers. We aimed to evaluate the impact of stromal categorization which incorporated the stromal TILs and TSR on survival outcomes in recurrent oral cancer. METHODS: 162 patients who received surgery-based treatment between 2010 and 2020 were recruited. Outcomes were 5-year overall survival (OS) and disease-specific survival (DSS). The impact of stromal categorization of recurrent primary tumor or node on 5-year OS and DSS were assessed with the Kaplan-Meier method. Multivariate analysis was performed, incorporating variables at initial treatment and salvage surgery. Patients were further categorized using a survival decision tree. RESULTS: Mean age was 56.1 (SD, 11.3) years; 153 patients (94.4%) were male; 51 patients (31.5%) had stromal category III. Local recurrence occurred in 94 patients (58%), regional recurrence in 55 (34%), and loco-regional recurrence in 13 (8%). Patients with stromal category III had poorer 5-year OS and DSS. Prior radiotherapy, advanced recurrent stage, positive surgical margin, and stromal category III were independent prognosticators for 5-year OS and DSS. In survival decision tree analysis, patients with prior radiotherapy and stromal category III had the worst outcomes. CONCLUSION: Stromal categorization is associated with outcomes in recurrent oral cancer. Patients with poor prognosticators, such as stromal categorization III, prior radiation, and advanced stage may require closer follow-up and intensive treatment.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Middle Aged , Survival Rate , Neoplasm Recurrence, Local/pathology , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , Prognosis , Salvage Therapy/methods , Retrospective Studies , Tumor Microenvironment
7.
Mod Pathol ; 37(3): 100427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219951

ABSTRACT

The understanding of schwannoma tumorigenesis has been reshaped by the recent identification of SH3PXD2A::HTRA1 fusion in 10% of intracranial/spinal schwannomas. Nonetheless, pathologic features of schwannomas harboring this fusion, as well as its prevalence outside intracranial/spinal locations, have not been characterized. We screened 215 consecutive schwannomas for their clinicopathologic characteristics and fusion status using reverse-transcriptase polymerase chain reaction (RT-PCR). Among 29 (13.5%) fusion-positive schwannomas, the most prevalent location was peripheral somatic tissue (30.7%, 19/62), followed by spinal/paraspinal (18.4%, 7/38), body cavity/deep structures (10%, 2/20), intracranial (1.3%, 1/75), and viscera (0/13). All 8 cellular, 4 microcystic/reticular, and 3 epithelioid schwannomas were fusion-negative, as were 41/42 nonschwannomatous peripheral nerve sheath tumors. Remarkably, a distinct 'serpentine' palisading pattern, comprising ovoid/plump cells shorter than usual schwannian cells in a hyalinized stroma, was identified in most fusion-positive cases and the schwannomatous component of the only fusion-positive malignant peripheral nerve sheath tumor. To validate this finding, 60 additional cases were collected, including 36 with (≥10% arbitrarily) and 24 without appreciable serpentine histology, of which 29 (80.6%) and 2 (8.3%) harbored the fusion, respectively. With percentages of 'serpentine' areas scored, 10% was determined as the optimal practical cut-off to predict the fusion status (sensitivity, 0.950; specificity, 0.943). Fusion positivity was significantly associated with serpentine histology, smaller tumors, younger patients, and peripheral somatic tissue, while multivariate logistic linear regression analysis only identified serpentine histology and location as independent fusion-predicting factors. RNA in situ hybridization successfully detected the fusion junction, highly concordant with RT-PCR results. Gene expression profiling on 18 schwannomas demonstrated segregation largely consistent with fusion status. Fusion-positive cases expressed significantly higher HTRA1 mRNA abundance, perhaps exploitable as a biomarker. In summary, we systematically characterize a series of 60 SH3PXD2A::HTRA1 fusion-positive schwannomas, showing their distinctive morphology and location-specific prevalence for the first time.


Subject(s)
Nerve Sheath Neoplasms , Neurilemmoma , Humans , Neurilemmoma/pathology , Nerve Sheath Neoplasms/pathology , Cell Transformation, Neoplastic , Adaptor Proteins, Vesicular Transport
8.
ACS Appl Mater Interfaces ; 15(23): 27975-27983, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37277315

ABSTRACT

Incorporation of a non-fullerene acceptor (NFA) into an organic bulk-heterojunction currently has realized the extendable spectral response and high photocurrent generation in organic photodiodes. However, to allow these organic materials to be industrially commercialized, the thermal stability which enables the materials to survive under the process integration and operation needs to be considered. Generally, NFA small molecules showed high crystallinity, which aggregated through heating and led to the poor thermal stability. To tackle the thermal stability issue of highly efficient NFAs, two IDIC-based NFA dimers─IDIC-T Dimer and IDIC-TT Dimer─were designed, synthesized, and characterized; the thermal stability of the BHJ layer incorporating these dimer molecules was evaluated and compared with that of the BHJ layer using the monomer, IDIC-4Cl, as acceptors. Eventually, a power conversion efficiency of 9.44% was achieved for organic photovoltaic devices based on the NFA dimer. The dimers also showed remarkable thermal stability than the IDIC-4Cl monomer, which provided a promising direction for the polymer/small-molecule system in organic photodiodes for industrial practicability.

9.
Sci Total Environ ; 883: 163529, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37068689

ABSTRACT

As a typical triazole fungicide, difenoconazole is extensively used to control plant diseases; however, its residue in environmental waters poses a risk to aquatic organisms. In this study, we investigated the acute toxicity of different life stages and sub-lethal toxicity in embryonic yolk sac stage of difenoconazole to zebrafish, and the developmental toxicity in F1 generation of parents exposed to difenoconazole at different life stages of zebrafish. Furthermore, we used transcriptomics to explore the potential mechanisms of difenoconazole on the F1 larvae of parents exposed to the chemical at the embryonic stage. The results of this study showed that developmental defects were observed in the F1 embryo/larvae of parents exposed to 3, 30, and 300 µg/L of difenoconazole at different (embryo, larval, juvenile, and adult) life stages, and exposure to difenoconazole at the embryonic stage caused more severe developmental toxicity than those at other life stages. Developmental defects (malformation, inhibition of heartbeat and body length) were observed in the F1 embryos and larvae of parents exposed to difenoconazole at the embryonic stage. In addition, the total cholesterol and triglyceride contents were significantly reduced in the F1 larvae, and RNA-seq analysis revealed significant alterations in the expression of nine genes (msmo1, hsd17b7, sc5d, tm7sf2, ebp, cyp2r1, lss, cyp51, and cyp27b1) in the steroid synthesis pathway. This is suggested that F1 larvae of parents exposed to difenoconazole at the embryonic stage show abnormalities in the steroid biosynthetic pathway. These results reveal the differences in toxicity of difenoconazole to zebrafish at different life stages, improve studies on difenoconazole toxicity to zebrafish, and provide a new perspective for assessing the risk of contaminants to aquatic organisms.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/physiology , Embryo, Nonmammalian/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Triazoles/toxicity , Triazoles/metabolism , Larva , Steroids/metabolism
10.
J Agric Food Chem ; 71(10): 4249-4257, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36877166

ABSTRACT

Pyraquinate, a newly developed 4-hydroxyphenylpyruvate dioxygenase class herbicide, has shown excellent control of resistant weeds in paddy fields. However, its environmental degradation products and corresponding ecotoxicological risks after field application remain ambiguous. In this study, we systematically investigate the photolytic behaviors of pyraquinate in aqueous solutions and in response to xenon lamp irradiation. The degradation follows first-order kinetics, and its rate depends on pH and the amount of organic matter. No vulnerability to light radiation is indicated. Ultrahigh-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry and UNIFI software analysis reveals six photoproducts generated by methyl oxidation, demethylation, oxidative dechlorination, and ester hydrolysis. Gaussian calculation suggests that activities due to hydroxyl radicals or aquatic oxygen atoms caused these reactions on the premise of obeying thermodynamic criteria. Practical toxicity test results show that the toxicity of pyraquinate to zebrafish embryos is low but increases when the compound is combined with its photoproducts.


Subject(s)
Herbicides , Water Pollutants, Chemical , Animals , Photolysis , Herbicides/toxicity , Herbicides/analysis , Zebrafish , Chromatography, Liquid , Mass Spectrometry , Kinetics , Water Pollutants, Chemical/chemistry
11.
Mod Pathol ; 36(7): 100161, 2023 07.
Article in English | MEDLINE | ID: mdl-36948401

ABSTRACT

Extraskeletal myxoid chondrosarcoma (EMC) is an ultrarare sarcoma typically exhibiting myxoid/reticular histology and NR4A3 translocation. However, morphologic variants and the relevance of non-EWSR1::NR4A3 fusions remain underexplored. Three challenging pan-Trk-expressing cases, featuring cellular to solid histology, were subjected to RNA exome sequencing (RES), unveiling different NR4A3-associated fusions. Alongside RES-analyzed cases, fluorescence in situ hybridization was performed to confirm 58 EMCs, with 48 available for pan-Trk immunostaining and KIT sequencing. Except for 1 (2%) NR4A3-rearranged EMC without identifiable partners, 46 (79%), 9 (16%), and 2 (3%) cases harbored EWSR1::NR4A3, TAF15::NR4A3, and TCF12::NR4A3 fusions, respectively. Five EWSR1::NR4A3-positive EMCs occurred in the subcutis (3) and bone (2). Besides 43 classical cases, there were 8 cellular, 4 rhabdoid/anaplastic, 2 solid, and 1 mixed tumor-like variants. Tumor cells were oval/spindle to pleomorphic and formed loose myxoid/reticular to compact sheet-like or fascicular patterns, imparting broad diagnostic considerations. RES showed upregulation of NTRK2/3, KIT, and INSM1. Moderate-to-strong immunoreactivities of pan-Trk, CD117, and INSM1 were present in 35.4%, 52.6%, and 54.6% of EMCs, respectively. KIT p. E554K mutation was detected in 2/48 cases. TAF15::NR4A3 was significantly associated with size >10 cm (78%, P = .025). Size >10 cm, moderate-to-severe nuclear pleomorphism, metastasis at presentation, TAF15::NR4A3 fusion, and the administration of chemotherapy portended shorter univariate disease-specific survival, whereas only size >10 cm (P = .004) and metastasis at presentation (P = .032) remained prognostically independent. Conclusively, EMC may manifest superficial or osseous lesions harboring EWSR1::NR4A3, underrecognized solid or anaplastic histology, and pan-Trk expression, posing tremendous challenges. Most TAF15::NR4A3-positive cases were >10 cm in size, ie, a crucial independent prognosticator, whereas pathogenic KIT mutation rarely occurred.


Subject(s)
Chondrosarcoma , Receptors, Steroid , Sarcoma , TATA-Binding Protein Associated Factors , Humans , In Situ Hybridization, Fluorescence , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Chondrosarcoma/genetics , Chondrosarcoma/diagnosis , Sarcoma/genetics , TATA-Binding Protein Associated Factors/genetics , Repressor Proteins/genetics , DNA-Binding Proteins/genetics , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/genetics
12.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36854302

ABSTRACT

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Subject(s)
Chromatin , DNA Repair , Animals , Chromatin/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Mammals/metabolism , Telomere-Binding Proteins/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Cycle Proteins/metabolism
13.
ACS Appl Mater Interfaces ; 15(6): 7911-7918, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36719898

ABSTRACT

Achieving large-area organic photovoltaic (OPV) modules with reasonable cost and performance is an important step toward commercialization. In this work, solution-processed conventional and inverted OPV modules with an area of 216 cm2 were fabricated by the blade coating method. Film uniformity was controlled by adjusting the fabrication parameters of the blade coating procedure. The influence of the concentration of the solutions of the interfacial materials on OPV module performance was investigated. For OPV modules based on the PM6:Y6 photoactive layer, a certificated power conversion efficiency (PCE) of 9.10% was achieved for the conventional OPV modules based on the TASiW-12 interfacial layer while a certificated PCE of 11.27% was achieved for the inverted OPV modules based on the polyethylenimine (PEI) interfacial layer. As for OPV modules based on a commercially available photoactive layer, PV-X Plus, a PCE of 8.52% was achieved in the inverted OPV modules. A halogen-free solvent, o-xylene, was used as the solvent for PV-X Plus, which makes the industrial production much more environmentally friendly.

14.
Sci Total Environ ; 870: 161795, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36708821

ABSTRACT

Microplastics (MPs) and pesticides frequently coexist in farmland soil; however, there are relatively few studies on the ecological risk assessment of soil animals attributed to the combined pollution caused by MPs and pesticides. Moreover, the influence of particle size on the combined toxic effects of MPs and pesticides remains poorly understood. In this study, different-sized polyethylene MPs (PE MPs; 10 µm, 500 µm, and 2 mm) were combined with a series of imidacloprid concentrations (IMI; 0.10, 0.50 and 1.00 mg/kg), and earthworms (Eisenia fetida) were exposed to these MP and IMI combinations for 28 d to explore the combined toxic effects and mechanisms. The results showed, compared with IMI or PE MPs exposure alone, the combined exposure of IMI and PE MPs did not substantially increase the acute toxicity of earthworms but significantly inhibited weight increase and induced more serious epidermal damage to earthworms with a size effect; among these 10 µm PE MPs combined with IMI exhibited the strongest toxic effects. In addition, the combined exposure decreased antioxidant enzymes activity and caused oxidative damage in earthworms. Transcriptome results demonstrated most of the treatment combinations affected the ferroptosis pathway, which was further verified by the increase in the total iron content, reactive oxygen species, and malondialdehyde content in earthworms. Combined with the analysis of key signalling pathways, the above results revealed that the combined exposure to IMI and PE MPs showed stronger toxicity to earthworms than exposure to either IMI or MPs alone, which was mediated by the superimposed effect of ferroptosis and oxidative damage. Moreover, the effect was size-dependent, with 10 µm PE MPs combined with IMI exhibiting the strongest toxic effects. This study aimed to provide data to support the ecological risk assessment of soil animals caused by the combined pollution of MPs and coexisting pesticides.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Microplastics/toxicity , Polyethylene/toxicity , Polyethylene/metabolism , Plastics/toxicity , Oligochaeta/metabolism , Soil Pollutants/analysis , Soil
16.
Animals (Basel) ; 12(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36552433

ABSTRACT

Bovine respiratory syncytial virus (BRSV) is an important pathogen of the bovine respiratory disease complex (BRDC); however, its prevalence and molecular characteristics in China remain largely unknown. In this study, 788 nasal swabs from 51 beef cattle farms with BRDC outbreaks in 16 provinces and one municipality were collected from October 2020 to July 2022, and 18.65% (147/788) of samples from 23 farms across 11 provinces were detected as BRSV-positive by reverse transcription-insulated isothermal PCR (RT-iiPCR) assay. Further, 18 complete G gene sequences were classified into BRSV subgroup III, and 25 complete F gene sequences were obtained from 8 and 10 provinces. Compared to the known BRSV strains in GenBank, the G proteins and F proteins in this study shared several identical amino acid (aa) mutations. Moreover, five nearly complete genome sequences were obtained and clustered into a large branch with two America BRSV subgroup III strains (KU159366 and OM328114) rather than the sole Chinese strain (MT861050) but were located in an independent small branch. In conclusion, this study reveals that BRSV has a wide geographical distribution in China, and subgroup III strains, which have unique evolution characteristics, are the dominant strains. The results contribute to a better understanding of the prevalence and genetic evolution of BRSV.

17.
Breast Cancer Res Treat ; 196(1): 31-44, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36040642

ABSTRACT

PURPOSE: Sirtuin7 (SIRT7), as a member of the sirtuin and NAD+-dependent protein-modifying enzyme family, plays an important role in regulating cellular metabolism, stress responses, tumorigenesis, and aging. Ubiquitination and deubiquitination are reversible post-translational modifications that regulate protein stability, enzyme activity, protein-protein interactions, and cellular signaling transduction. However, whether SIRT7 is regulated by deubiquitination signaling is unclear. This study aims to elucidate the molecular mechanism of SIRT7 via deubiquitination signaling. METHODS: USP17L2 or SIRT7-targeting shRNAs were used to deplete USP17L2 or SIRT7. Western blot was applied to assess the effects of USP17L2 or SIRT7 depletion. A co-immunoprecipitation assay was used to detect the interaction relationship. Cell Counting Kit-8 assays were applied to assess the viability of breast cancer cells. An immunohistochemistry assay was employed to detect the protein level in samples from breast cancer patients, and the TCGA database was applied to analyze the survival rate of breast cancer patients. Statistical analyses were performed with the Student's t test (two-tailed unpaired) and χ2 test. RESULTS: We find that the deubiquitinase USP17L2 interacts with and deubiquitinates SIRT7, thereby increasing SIRT7 protein stability. In addition, USP17L2 regulates DNA damage repair through SIRT7. Furthermore, SIRT7 polyubiquitination is increased by knocking down of USP17L2, which leads to cancer cells sensitizing to chemotherapy. In breast cancer patient samples, high expression of USP17L2 is correlated with increased levels of SIRT7 protein. In conclusion, our study demonstrates that the USP17L2-SIRT7 axis is the new regulator in DNA damage response and chemo-response, suggesting that USP17L2 may be a prognostic factor and a potential therapeutic target in breast cancer. CONCLUSION: Our results highlighted that USP17L2 regulates the chemoresistance of breast cancer cells in a SIRT7-dependent manner. Moreover, the role of USP17L2 as a potential therapeutic target in breast cancer and a prognostic factor for patients was elucidated.


Subject(s)
Breast Neoplasms , Sirtuins , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , DNA Damage , Deubiquitinating Enzymes/genetics , Drug Resistance, Neoplasm/genetics , Endopeptidases/genetics , Female , Humans , NAD/genetics , Sirtuins/genetics , Sirtuins/metabolism
18.
ACS Appl Mater Interfaces ; 14(33): 38004-38012, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35960185

ABSTRACT

Image-sensor technology is the foundation of many emerging applications, where the photodetector is designed to interact with incoming photons that have specific colors or wavelengths. A color filter is therefore crucial to enable the selective spectral response of the photodetector and to eliminate the crosstalk interference resulting from ambient lights. Unfortunately, a reduced detection sensitivity of the photodetector is inevitable due to an imperfect light filtering, which greatly limits the practical applications of selective-response photodetectors. Herein, we demonstrate a bulk-heterojunction (BHJ) organic composite featuring a self-filtering light responsive characteristic. Through a careful optimization of the BHJ film, the organic photodetector (OPD) demonstrates a high-selective spectral response to the infrared (IR) radiation without the need of applying a color filter. As a result, the self-filtering top-illuminated OPD exhibits a narrowband external quantum efficiency (EQE) of 53% with a narrow full width at half-maximum (fwhm) of 56 nm centering at 1080 nm. A high responsivity of 0.46 A W-1 is also achieved at 1080 nm wavelength due to the self-filtering characteristic.

19.
Cancers (Basel) ; 14(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35804913

ABSTRACT

The tumor microenvironment (TME) plays a crucial role in tumor progression. One of its key stromal components, cancer-associated fibroblasts (CAFs), may crosstalk with cancer cells by secreting certain cytokines or chemokines. However, which important mediator(s) are released by CAFs, and the underlying molecular mechanism, remain largely unknown. In the present study, we isolated patient-derived CAFs and normal fibroblasts (NFs). Using microarray analysis, we detected chemokine ligand 11 (CCL11) overexpression in CAFs compared to NFs. CCL11 administration promoted the migration and invasion of head and neck cancer (HNC) cells with enhanced cancer stem cell-like properties and induction of epithelial-to-mesenchymal transition. Furthermore, neutralization of CCL11 activity reversed the aggressive phenotype of CAF-induced cancer cells. Confocal microscopy showed colocalization of CCL11 and CC chemokine receptor 3 (CCR3) on HNC cells. Moreover, immunohistochemical analysis of clinical samples from 104 patients with HNC showed that expression of CCL11 and CCR3 were significantly correlated with poor overall survival (p = 0.003 and 0.044, respectively). Collectively, CCL11 expressed on CAFs promotes HNC invasiveness, and neutralization of CCL11 reverses this effect. We propose that the CCL11/CCR3 signaling circuit is a potential target for optimizing therapeutic strategies against HNC.

20.
Biochem Pharmacol ; 195: 114862, 2022 01.
Article in English | MEDLINE | ID: mdl-34843716

ABSTRACT

The two microRNAs miR-192 and miR-194 are abundantly expressed in the liver and are considered serum biomarkers of liver injury. However, their role in the development of liver injury has not yet been determined. In this study, we generated miR-192/194 mutant mice and determined the effect of miR-192/194 loss on acetaminophen (APAP)-induced acute liver injury. With genetic depletion of miR-192/194, mutant mice were fertile and normally developed. No spontaneous liver injuries were observed in mutant mice. After APAP administration, mutant mice developed less severe liver damage than control mice. Specifically, mutant mice exhibited significantly lower serum alanine transaminase (ALT) levels and pericentral necrosis/apoptosis than control mice receiving APAP. ß-catenin signaling was activated during the early phase of liver injury. Activated ß-catenin signaling led to faster cellular proliferation and higher expression of AXIN2 and glutamine synthetases. After partial hepatectomy, the miR-192/194 mutant hepatocytes were more regenerative than control hepatocytes (as shown by BrdU incorporation). Moreover, in vitro experiments indicated that miR-194, but not miR-192, specifically repressed ß-catenin signaling, while animal experiments revealed that chemical-mediated knockdown of ß-catenin signaling compromised APAP resistance that liver protected from miR-192/194 genetic depletion. Collectively, our data indicated that the loss of miR-194 promoted liver regeneration and protected the liver from APAP-induced injury.


Subject(s)
Chemical and Drug Induced Liver Injury/genetics , Liver Regeneration/genetics , Liver/metabolism , MicroRNAs/genetics , Acetaminophen , Animals , Cell Proliferation/genetics , Chemical and Drug Induced Liver Injury/etiology , Gene Expression Regulation , Liver/pathology , Liver/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Signal Transduction/genetics , beta Catenin/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...