Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 10(1): 66, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32066665

ABSTRACT

Neurodevelopmental disorders are heterogeneous and identifying shared genetic aetiologies and converging signalling pathways affected could improve disease diagnosis and treatment. Truncating mutations of the abnormal spindle-like microcephaly associated (ASPM) gene cause autosomal recessive primary microcephaly (MCPH) in humans. ASPM is a positive regulator of Wnt/ß-Catenin signalling and controls symmetric to asymmetric cell division. This process balances neural progenitor proliferation with differentiation during embryogenesis, the malfunction of which could interfere with normal brain development. ASPM mutations may play a role also in other neurodevelopmental disorders, nevertheless, we lack the details of how or to what extent. We therefore assessed neurodevelopmental disease and circuit endophenotypes in mice with a truncating Aspm1-7 mutation. Aspm1-7 mice exhibited impaired short- and long-term object recognition memory and markedly enhanced place learning in the IntelliCage®. This behaviour pattern is reminiscent of a cognitive phenotype seen in mouse models and patients with a rare form of autism spectrum disorder (ASD) as well as in mouse models of altered Wnt signalling. These alterations were accompanied by ventriculomegaly, corpus callosum dysgenesis and decreased parvalbumin (PV)+ interneuron numbers in the hippocampal Cornu Ammonis (CA) region and thalamic reticular nucleus (TRN). PV+ cell number correlated to object recognition (CA and TRN) and place learning (TRN). This opens the possibility that, as well as causing MCPH, mutant ASPM potentially contributes to other neurodevelopmental disorders such as ASD through altered parvalbuminergic interneuron development affecting cognitive behaviour. These findings provide important information for understanding the genetic overlap and improved treatment of neurodevelopmental disorders associated with ASPM.


Subject(s)
Autism Spectrum Disorder , Nerve Tissue Proteins , Alleles , Animals , Calmodulin-Binding Proteins , Cognition , Humans , Mice , Mutation , Nerve Tissue Proteins/genetics , Neurons/metabolism , Phenotype
2.
Cell Cycle ; 6(13): 1605-12, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17534152

ABSTRACT

Mutations in ASPM (abnormal spindle-like microcephaly associated) and citron kinase (CITK) cause primary microcephaly in humans and rodents, respectively. Both proteins are expressed during neurogenesis and play important roles in neuronal progenitor cell division. ASPM is localized to the spindle pole, and is essential for maintaining proliferative cell division. CITK is present at the cytokinesis furrow and midbody ring, and it is essential for cellular abscission. We report here that ASPM also localizes to the midbody ring in mammalian cells. ASPM co-localizes with CITK at the midbody ring and coimmunoprecipitates with CITK in lysates prepared from HeLa cells and embryonic neuroepithelium. Furthermore, a GFP-tagged fragment of the N-terminus of ASPM localizes to centrosomes and spindle poles, while a GFP-tagged fragment of the C-terminus localizes to midbodies. All reported ASPM mutations that cause microcephaly involve a truncation or mutation of the C-terminus. In addition, at least two other microcephaly-related proteins, CENPJ and CDK5RAP2, previously localized to spindle poles, also localize to midbodies. Together our observations support a model of neurogenesis in which spindle dynamics and cellular abscission are coordinated.


Subject(s)
Cell Cycle Proteins/metabolism , Cytokinesis , Nerve Tissue Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Spindle Apparatus/metabolism , Animals , Cells, Cultured , Centrosome/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Neocortex/embryology , Neocortex/metabolism , Nerve Tissue Proteins/chemistry , Neurons/metabolism , Protein Structure, Tertiary , Protein Transport , Rats , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...