Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Chemosphere ; 362: 142586, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876328

ABSTRACT

The remediation of diesel-contaminated soil is a critical environmental concern, driving the need for effective solutions. Recently, the methodology of Non-thermal Atmospheric Plasma (NTAP) technology, which is equipped with a Dielectric Barrier Discharge (DBD) electrode and has become a feasible approach, was proven to be viable. The reactive species from the plasma were exposed to the contaminated soil in this investigation using the NTAP technique. The reacted soil was then extracted using dichloromethane, and the amount of Total Petroleum Hydrocarbon (TPH) removed was assessed. Investigation into varying power levels, treatment durations, and hydrogen peroxide integration revealed significant findings. With an initial concentration of 3086 mg of diesel/kg of soil and a pH of 5.0, 83% of the diesel was removed from the soil at 150 W in under 20 min. Extended exposure to NTAP further improved removal rates, highlighting the importance of treatment duration optimization. Additionally, combining hydrogen peroxide (H2O2) with NTAP enhanced removal efficiency by facilitating diesel breakdown. This synergy offers a promising avenue for comprehensive soil decontamination. Further analysis considered the impact of soil characteristics on removal efficacy. Mechanistically, NTAP generates reactive species that degrade diesel into less harmful compounds, aiding subsequent removal. Overall, NTAP advances environmental restoration efforts by offering a quick, economical, and environmentally benign method of remediating diesel-contaminated soil especially when used in tandem with hydrogen peroxide.

2.
JAMA Netw Open ; 7(5): e249539, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700863

ABSTRACT

Importance: Many epidemiologic studies have suggested that low levels of plasma leptin, a major adipokine, are associated with increased risk of Alzheimer disease (AD) dementia and cognitive decline. Nevertheless, the mechanistic pathway linking plasma leptin and AD-related cognitive decline is not yet fully understood. Objective: To examine the association of plasma leptin levels with in vivo AD pathologies, including amyloid-beta (Aß) and tau deposition, through both cross-sectional and longitudinal approaches among cognitively unimpaired older adults. Design, Setting, and Participants: This was a longitudinal cohort study from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer Disease. Data were collected from January 1, 2014, to December 31, 2020, and data were analyzed from July 11 to September 6, 2022. The study included a total of 208 cognitively unimpaired participants who underwent baseline positron emission tomography (PET) scans for brain Aß deposition. For longitudinal analyses, 192 participants who completed both baseline and 2-year follow-up PET scans for brain Aß deposition were included. Exposure: Plasma leptin levels as assessed by enzyme-linked immunosorbent assay. Main Outcomes and Measures: Baseline levels and longitudinal changes of global Aß and AD-signature region tau deposition measured by PET scans. Results: Among the 208 participants, the mean (SD) age was 66.0 (11.3) years, 114 were women (54.8%), and 37 were apolipoprotein E ε4 carriers (17.8%). Lower plasma leptin levels had a significant cross-sectional association with greater brain Aß deposition (ß = -0.04; 95% CI, -0.09 to 0.00; P = .046), while there was no significant association between plasma leptin levels and tau deposition (ß = -0.02; 95% CI, -0.05 to 0.02; P = .41). In contrast, longitudinal analyses revealed that there was a significant association between lower baseline leptin levels and greater increase of tau deposition over 2 years (ß = -0.06; 95% CI, -0.11 to -0.01; P = .03), whereas plasma leptin levels did not have a significant association with longitudinal change of Aß deposition (ß = 0.006; 95% CI, 0.00-0.02; P = .27). Conclusions and Relevance: The present findings suggest that plasma leptin may be protective for the development or progression of AD pathology, including both Aß and tau deposition.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Leptin , tau Proteins , Humans , Leptin/blood , Female , Male , Aged , Alzheimer Disease/blood , Longitudinal Studies , Cross-Sectional Studies , Amyloid beta-Peptides/blood , tau Proteins/blood , Positron-Emission Tomography , Brain/diagnostic imaging , Brain/metabolism , Republic of Korea/epidemiology , Aged, 80 and over , Cognitive Dysfunction/blood , Biomarkers/blood , Middle Aged
3.
J Hazard Mater ; 469: 134015, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38518691

ABSTRACT

Developing effective water treatment materials, particularly through proven adsorption methods, is crucial for removing heavy metal contaminants. This study synthesizes a cost-effective three-dimensional material encapsulating graphitic carbon nitride-layered double oxide (GCN-LDO) in sodium alginate (SA) through the freeze-drying method. The material is applied to remove uranium (U(VI)) and cadmium (Cd(II)) in real water systems. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analyses conclusively verified the elemental composition and successful encapsulation of GCN-LDO within the SA matrix. Removal effectiveness was tested under various conditions, including adsorbent dose, ionic strength, contact time, temperature, different initial pollutant concentrations, and the impact of co-existing ions. The adsorption of U(VI) and Cd(II) conformed to the pseudo-second-order (PSO) kinetic model, signifying a chemical interaction between the sodium alginate-graphitic carbon nitride-layered double oxide (SA-GCN-LDO) sponge and the metal ions. The Langmuir isotherm indicated monolayer, homogeneous adsorption for U(VI) and Cd(II) with capacities of 158.25 and 165.00 mg/g. SA-GCN-LDO recyclability was found in up to seven adsorption cycles with a removal efficacy of 70%. The temperature effect study depicts the exothermic nature of the U(VI) and Cd(II) ion removal process. Various mechanisms involved in U(VI) and Cd(II) removal were proposed. Further, continuous fixed bed column studies were performed, and Thomas and the Yoon-Nelson model were studied. These insights from this investigation contribute to advancing our knowledge of the material's performance within the context of U(VI) and Cd(II) adsorption, paving the way for optimized and sustainable water treatment solutions.

4.
Alzheimers Res Ther ; 16(1): 50, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454444

ABSTRACT

BACKGROUND: Growing evidence suggests that not only cerebrovascular disease but also Alzheimer's disease (AD) pathological process itself cause cerebral white matter degeneration, resulting in white matter hyperintensities (WMHs). Some preclinical evidence also indicates that white matter degeneration may precede or affect the development of AD pathology. This study aimed to clarify the direction of influence between in vivo AD pathologies, particularly beta-amyloid (Aß) and tau deposition, and WMHs through longitudinal approach. METHODS: Total 282 older adults including cognitively normal and cognitively impaired individuals were recruited from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) cohort. The participants underwent comprehensive clinical and neuropsychological assessment, [11C] Pittsburgh Compound B PET for measuring Aß deposition, [18F] AV-1451 PET for measuring tau deposition, and MRI scans with fluid-attenuated inversion recovery image for measuring WMH volume. The relationships between Aß or tau deposition and WMH volume were examined using multiple linear regression analysis. In this analysis, baseline Aß or tau were used as independent variables, and change of WMH volume over 2 years was used as dependent variable to examine the effect of AD pathology on increase of WMH volume. Additionally, we set baseline WMH volume as independent variable and longitudinal change of Aß or tau deposition for 2 years as dependent variables to investigate whether WMH volume could precede AD pathologies. RESULTS: Baseline Aß deposition, but not tau deposition, had significant positive association with longitudinal change of WMH volume over 2 years. Baseline WMH volume was not related with any of longitudinal change of Aß or tau deposition for 2 years. We also found a significant interaction effect between baseline Aß deposition and sex on longitudinal change of WMH volume. Subsequent subgroup analyses showed that high baseline Aß deposition was associated with increase of WMH volume over 2 years in female, but not in male. CONCLUSIONS: Our findings suggest that Aß deposition accelerates cerebral WMHs, particularly in female, whereas white matter degeneration appears not influence on longitudinal Aß increase. The results also did not support any direction of influence between tau deposition and WMHs.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Male , Female , Aged , Alzheimer Disease/pathology , White Matter/diagnostic imaging , White Matter/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Magnetic Resonance Imaging , Cognitive Dysfunction/pathology
5.
Sci Rep ; 14(1): 4267, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383598

ABSTRACT

This study synthesized a highly efficient KOH-treated sunflower stem activated carbon (KOH-SSAC) using a two-step pyrolysis process and chemical activation using KOH. The resulting material exhibited exceptional properties, such as a high specific surface area (452 m2/g) and excellent adsorption capacities for phenol (333.03 mg/g) and bisphenol A (BPA) (365.81 mg/g). The adsorption process was spontaneous and exothermic, benefiting from the synergistic effects of hydrogen bonding, electrostatic attraction, and stacking interactions. Comparative analysis also showed that KOH-SSAC performed approximately twice as well as sunflower stem biochar (SSB), indicating its potential for water treatment and pollutant removal applications. The study suggests the exploration of optimization strategies to further enhance the efficiency of KOH-SSAC in large-scale scenarios. These findings contribute to the development of improved materials for efficient water treatment and pollution control.


Subject(s)
Benzhydryl Compounds , Helianthus , Water Pollutants, Chemical , Phenol/analysis , Charcoal/chemistry , Wastewater , Phenols/analysis , Thermodynamics , Adsorption , Kinetics , Water Pollutants, Chemical/analysis
6.
Chemosphere ; 346: 140551, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303398

ABSTRACT

The synthesis and characterization of graphitic carbon nitride (GCN) and its composites with calcined layered double hydroxide (CLDH) were examined in this investigation. The goal was to assess these composites' maximum adsorption capacity (qmax) for U(VI) ions in wastewater. Several different characterization methodologies were utilized to examine the fabricated substances. These methods encompass X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The GCN-CLDH composite displayed enhanced adsorption ability towards U(VI) ions due to its high surface functionality. Langmuir adsorption isotherm analysis showed that more than 99% of U(VI) ions were adsorbed, with a qmax of 196.69 mg/g. The kinetics data exhibited a good fit for a pseudo-second-order (PSO) model. Adsorption mechanisms involving precipitation and surface complexation via Lewis's acid-base interactions were proposed. The application of the GCN-CLDH composite in groundwater demonstrated adsorption below the maximum permissible limit established by USEPA, indicating improved cycling stability. These observations underscore the capacity of the GCN-CLDH composite's proficiency in adsorbing U(VI) aqueous solutions containing radioactive metals.


Subject(s)
Graphite , Nitrogen Compounds , Water Pollutants, Chemical , Water , Spectroscopy, Fourier Transform Infrared , Hydroxides/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/analysis
7.
Environ Pollut ; 337: 122594, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37742866

ABSTRACT

Removing volatile organic compounds (VOCs) from aqueous solutions is critical for reducing VOC emissions in the environment. Activated carbons are widely used for removal of VOCs from water. However, they show less application feasibility and low removal due to less surface area. Here, a cost-effective and high surface area activated carbonized polyaniline (ACP) was synthesized to sustainable removal of VOCs from water. The ACP microstructure, surface properties, and pore structure were investigated using Brunauer-Emmett-Teller (BET) theory, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The specific surface area of ACP6:1 (2988.13 m2/g) was greater than that of commercial activated carbon (PAC) (1094.49 m2/g), indicating that it has excellent VOC adsorption capacity. The effects of pH, initial VOC concentration, time, temperature, and ionic strength were studied. According to kinetic and thermodynamic studies on VOCs adsorption, it is an exothermic and spontaneous process involving rate-limiting kinetics. Adsorption isotherms follow the Freundlich isotherm model, suggesting that the adsorbent surface is heterogeneous with multilayer adsorption and maximum ACP adsorption capacities of 1913.9, 2453.3, 1635.8, and 3327.0 mg/g at 293 K for benzene, toluene, ethylbenzene, and perchloroethylene, respectively, representing a 3- to 5-fold improvement over PAC. ACP is a promising adsorbent with a high adsorption efficiency for VOC removal.


Subject(s)
Volatile Organic Compounds , Water Pollutants, Chemical , Charcoal/chemistry , Volatile Organic Compounds/chemistry , Thermodynamics , Water , Adsorption , Kinetics , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 337: 139323, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37392794

ABSTRACT

In this study, first time the combination of composites with Phytic acid (PA) as the organic binder cross-linker is reported. The novel use of PA with single and double conducting polymers (polypyrrole (Ppy) and polyaniline (Pani)) were tested against removal of Cr(VI) from wastewater. Characterizations (FE-SEM, EDX, FTIR, XRD, XPS) were performed to study the morphology and removal mechanism. The adsorption removal capability of Polypyrrole - Phytic Acid - Polyaniline (Ppy-PA-Pani) was deemed to be higher than Polypyrrole - Phytic Acid (Ppy-PA) due to the mere existence of Polyaniline as the extra polymer. The kinetics followed 2nd order with equilibration at 480 min, but Elovich model confirmed that chemisorption is followed. Langmuir isotherm model exhibited maximum adsorption capacity of 222.7-321.49 mg/g for Ppy-PA-Pani and 207.66-271.96 mg/g for Ppy-PA at 298K-318K with R2 values of 0.9934 and 0.9938 respectively. The adsorbents were reusable for 5 cycles of adsorption-desorption. The thermodynamic parameter, ΔH shows positive values confirmed the adsorption process was endothermic. From overall results, the removal mechanism is believed to be chemisorption through Cr(VI) reduction to Cr(III). The use of phytic acid (PA) as organic binder with combination of dual conducting polymer (Ppy-PA-Pani) was invigorating the adsorption efficiency than just single conducting polymer (Ppy-PA).


Subject(s)
Polymers , Water Pollutants, Chemical , Phytic Acid , Water Pollutants, Chemical/analysis , Pyrroles , Chromium/analysis , Adsorption , Kinetics , Hydrogen-Ion Concentration
9.
Chemosphere ; 313: 137615, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36572366

ABSTRACT

In this study, a graphene oxide-based lanthanum hydroxide/chitosan foam (CSGOL foam) was synthesized for arsenate (As(V)) remediation in surface water. The synthesized CSGOL foam texture and purity was assessed using scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) studies. The results proved that the foam was highly porous, stable, and had high surface functionality that facilitated adsorption for water pollutant removal. The sorption results proved that the As(V) removal was high (146.20 mg/g at pH 6 with 0.5 g/L CSGOL foam) when compared to the similar type of materials, endothermic chemisorption due to the production of monodentate and bidentate inner-sphere complexes. Furthermore, continuous column results indicated that the As(V) concentration in real surface waters was reduced to WHO standards (less than 10 µg As/L of water) of As(V) in drinking water for up to 10,000 bed volume. Further it can be used up to four cycles without loss of efficacy less than 93%. Because of its excellent removal capabilities and simple synthesis technique, CSGOL foam shows significant promise for treating As(V)-containing water. Further, the XPS analysis and batch studies results suggests that As(V) removal mechanism was involved electrostatic and surface complexation through chemical interaction predominately.


Subject(s)
Arsenates , Water Pollutants, Chemical , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/chemistry , Water/chemistry , Adsorption , Biopolymers , Hydrogen-Ion Concentration , Kinetics
10.
Chemosphere ; 310: 136888, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36265706

ABSTRACT

The bioaccumulation, non-biodegradability, and high toxicity of Cd(II) and U(VI) in water is a serious concerns. Manganese ferrite/graphene oxide (GMF) nanocomposites were synthesized, characterized, and used to efficiently remove Cd(II) and U(VI) from an aqueous solution in this study. X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS) analyses, respectively, confirmed the formation of GMF and the adsorptive removal mechanism. The XRD results revealed an amorphous structure when MnFe2O4 was loaded onto the GO surface. XPS results suggest that C = C, C-OorOH, and metal oxides are responsible for the removal of Cd(II) and U(VI) via electrostatic and chemical interaction. According to the Brunauer Emmett and Teller (BET), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) characterization analysis, GMF has a high surface area (117.78 m2/g) and a spherical shape with even distribution. The kinetics data were successfully reproduced by a pseudo-second-order non-linear model indicating the complexity of the sorption mechanism was rate-limiting. The maximum Langmuir uptake ability of GMF for Cd(II) and U(VI) was calculated to be 232.56 mg/g and 201.65 mg/g, respectively. Using external magnetic power, the prepared GMF can easily separate from the aqueous solution and can keep both metal ions under Environmental protection agency standards in water for up to six cycles of re-use of GMF. Finally, the GMF nanocomposite demonstrated significant promise as an adsorbent for removing Cd(II) and U(VI) from actual contaminated water samples. The antibacterial test was expanded to include gram-negative E. coli and gram-positive S. aureus to better understand GMF's bacterial inhibition efficacy.


Subject(s)
Cadmium , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Cadmium/analysis , Escherichia coli , Kinetics , Staphylococcus aureus , Water/chemistry , Water Pollutants, Chemical/analysis
11.
iScience ; 25(11): 105422, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36388975

ABSTRACT

Little is known about the association between meal frequency and Alzheimer's disease (AD) in humans. We tested the hypothesis that low meal frequency (LMF) is associated with reduced in vivo AD pathology in human brain, and additionally investigated the mediation of serum ghrelin, a hunger-related hormone, for the association. A total of 411 non-demented older adults were systematically interviewed to identify their dietary patterns including meal frequency and underwent multi-modal neuroimaging for cerebral beta-amyloid (Aß) and tau deposition, glucose metabolism, and cerebrovascular injury. LMF (less than three meals a day) was significantly associated with lower Aß deposition compared to high meal frequency (HMF). In addition, both LMF and reduced Aß deposition were significantly related to elevated serum ghrelin. Our findings suggest that LMF may be related to the lower risk of AD through reduced brain amyloid deposition. Additionally, ghrelin appears mediate the association between LMF and lower amyloid deposition.

12.
J Environ Manage ; 317: 115403, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35660830

ABSTRACT

Benzo[a]pyrene (BaP) is a major indicator of soil contamination and categorized as a highly persistent, carcinogenic, and mutagenic polycyclic aromatic hydrocarbon. An advanced peroxyacid oxidation process was developed to reduce soil pollution caused by BaP originating from creosote spills from railroad sleepers. The pH, organic matter, particle size distribution of soil, and concentrations of BaP and heavy metals (Cd, Cu, Zn, Pb, and As) in the BaP-contaminated soils were estimated. A batch experiment was conducted to determine the effects of organic acid type, soil particle size, stirring speed, and reaction time on the peroxyacid oxidation of BaP in the soil samples. Additionally, the effect of the organic acid concentration on the peroxyacid degradation of BaP was investigated using an oxidizing agent in spiked soil with and without hydrogen peroxide. The results of the oxidation process indicated that BaP and heavy metal residuals were below acceptable Korean standards. A significant difference in the oxidative degradation of BaP was observed between the spiked and natural soil samples. The formation of a peroxyacid intermediate was primarily responsible for the enhanced BaP oxidation. Further, butyric acid could be reused thrice without losing the efficacy (<90%). The systematic peroxyacid oxidative degradation mechanism of BaP was also discussed. A qualitative analysis of the by-products of the BaP reaction was conducted, and their corresponding toxicities were determined for possible field applications. The findings conclude that the developed peroxyacid oxidation method has potential applications in the treatment of BaP-contaminated soils.


Subject(s)
Metals, Heavy , Soil Pollutants , Benzo(a)pyrene/analysis , Benzo(a)pyrene/metabolism , Metals, Heavy/analysis , Oxidative Stress , Soil , Soil Microbiology , Soil Pollutants/analysis
13.
Chemosphere ; 299: 134457, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35367227

ABSTRACT

Owing to the ubiquitous existence of detrimental heavy metals in the environment, simple adsorption-oriented approaches are becoming increasingly appealing for the effective removal of Pb2+ and Cr3+ from water bodies. These techniques use nanocomposites (NC) of reduced graphene oxide (rGO) and Mn3O4 (rGO-Mn3O4), they employ a hydrothermal technique featuring NaBH4 and NaOH solutions. Here, spectroscopic and microscopic instrumental techniques were used to evaluate the morphological and physicochemical characteristics of prepared reduced graphene oxide manganese oxide (rGO-Mn3O4), revealing that it possessed a well-defined porous structure with a specific surface area of 126 m2 g-1. The prepared rGO-Mn3O4 had significant adsorption efficiencies for Pb2+ and Cr3+, achieving maximum sequestration capacities of 130.28 and 138.51 mg g-1 for Pb2+ and Cr3+, respectively, according to the Langmuir model. These adsorption capacities are comparable to or greater than those of previously reported graphene-based materials. The Langmuir isotherm and pseudo-second-order models adequately represented the experimental results. Thermodynamic analysis revealed that adsorption occurred through spontaneous endothermic reactions. Recycling studies showed that the developed r-GO-Mn3O4 had excellent recyclability, with <70% removal at the 5th cycle; its feasibility was evaluated using industrial wastewater, suggesting that Pb2+ was selectively removed from Pb2+ and Cr3+ contaminated water. The instrumental analysis and surface phenomena studies presented here revealed that the adsorptive removal processes of both heavy metals involved π electron donor-acceptor interactions, ion exchange, and electrostatic interactions, along with surface complexation. Overall, the developed rGO-Mn3O4 has the potential to be a high-value adsorbent for removing heavy metals.


Subject(s)
Graphite , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Graphite/chemistry , Kinetics , Lead , Water/chemistry , Water Pollutants, Chemical/analysis
14.
Sci Rep ; 12(1): 3430, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236886

ABSTRACT

Heavy metals are perceived as a significant environmental concern because of their toxic effect, bioaccumulation, and persistence. In this work, a novel sodium alginate (SA) and carboxymethylcellulose (CMC) entrapped with fly ash derived zeolite stabilized nano zero-valent iron and nickel (ZFN) (SA/CMC-ZFN), followed by crosslinking with CaCl2, is synthesized and applied for remediation of Cu(II) and Cr(VI) from industrial effluent. The characterization of the adsorbent and its surface mechanism for removing metals were investigated using advanced instrumental techniques, including XRD, FT-IR, SEM-EDX, BET, and XPS. The outcomes from the batch experiments indicated that monolayer adsorption on homogeneous surfaces (Langmuir isotherm model) was the rate-limiting step in both heavy metals sorption processes. The maximum adsorption capacity of as-prepared SA/CMC-ZFN was 63.29 and 10.15 mg/g for Cu(II) and Cr(VI), respectively. Owing to the fact that the wastewater released from industries are large and continuous, a continuous column is installed for simultaneous removal of heavy metal ions from real industrial wastewater. The outcomes revealed the potential of SA/CMC-ZFN as an efficient adsorbent. The experimental breakthrough curves fitted well with the theoretical values of Thomas and Yoon-Nelson models. Overall, the results indicated that SA/CMC-ZFN is a viable, efficient, and cost-effective water treatment both interms of batch and column processes.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Zeolites , Adsorption , Carboxymethylcellulose Sodium , Coal Ash , Kinetics , Magnetic Phenomena , Spectroscopy, Fourier Transform Infrared , Wastewater , Water Pollutants, Chemical/analysis
15.
Environ Res ; 204(Pt A): 112029, 2022 03.
Article in English | MEDLINE | ID: mdl-34509486

ABSTRACT

Pb(II) is a heavy metal that is a prominent contaminant in water contamination. Among the different pollution removal strategies, adsorption was determined to be the most effective. The adsorbent and its type determine the adsorption process's efficiency. As part of this effort, a magnetic reduced graphene oxide-based inverse spinel nickel ferrite (rGNF) nanocomposite for Pb(II) removal is synthesized, and the optimal values of the independent process variables (like initial concentration, pH, residence time, temperature, and adsorbent dosage) to achieve maximum removal efficiency are investigated using conventional response surface methodology (RSM) and artificial neural networks (ANN). The results indicate that the initial concentration, adsorbent dose, residence time, pH, and process temperature are set to 15 mg/L, 0.55 g/L, 100 min, 5, and 30 °C, respectively, the maximum removal efficiency (99.8%) can be obtained. Using the interactive effects of process variables findings, the adsorption surface mechanism was examined in relation to process factors. A data-driven quadratic equation is derived based on the ANOVA, and its predictions are compared with ANN predictions to evaluate the predictive capabilities of both approaches. The R2 values of RSM and ANN predictions are 0.979 and 0.991 respectively and confirm the superiority of the ANN approach.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Adsorption , Aluminum Oxide , Ferric Compounds , Graphite , Kinetics , Lead , Magnesium Oxide , Nickel , Water Pollutants, Chemical/analysis
16.
Chemosphere ; 286(Pt 2): 131776, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34371355

ABSTRACT

Biosorption using modified biochar has been increasingly adopted for the sustainable removal of uranium-contaminated from an aqueous solution. In this research study, the facile preparation and surface characteristics of magnetized biochar derived from waste watermelon rind to treat U(VI) contaminated water were investigated. The porosity, specific surface area, adsorption capacity, reusability, and stability were effectively improved after the magnetization of biochar. The kinetics and isotherm studies found that the U(VI) adsorption was rate-limiting monolayer sorption on the homogeneous surface of magnetized watermelon rind biochar (MWBC). The maximum adsorption capacity was found to be 323.56 mg of U(VI) per g of MWBC at pH 4.0 and 293 K that was higher than that of watermelon rind biochar (WBC) (135.86 mg g-1) and other sourced biochars. The surface interaction mechanism, environmental feasibility, applicability for real-filed water treatment studied in the electromagnetic semi-batch column, and reusability of MWBC were also explored. Furthermore, salient raised the ion exchange and complexation action capacity of MWBC due to the presence of Fe oxide. The overall results indicated that MWBC was not only inexpensive and had a high removal capacity for U(VI), but it also easily enabled phase separation from an aqueous solution, with more than three times reusability at a minimum removal capacity of 99%.


Subject(s)
Citrullus , Uranium , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Electromagnetic Phenomena , Kinetics , Uranium/analysis
17.
Polymers (Basel) ; 13(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34771391

ABSTRACT

Uranium (U(VI)) and thorium (Th(IV)) ions produced by the nuclear and mining industries cause water pollution, thereby harming the environment and human health. In this study, gadolinium oxide-decorated polyvinyl alcohol-graphene oxide composite (PGO-Gd) was developed using a simple hydrothermal process to treat U(VI) and Th(IV) ions in water. The developed material was structurally characterized by highly advanced spectroscopy and microscopy techniques. The effects of pH, equilibration time and temperature on both radionuclides (U(VI) and Th(IV)) adsorption by PGO-Gd were examined. The PGO-Gd composite adsorbed both metal ions satisfactorily, with adsorption capacities of 427.50 and 455.0 mg g-1 at pH 4.0, respectively. The adsorption properties of both metal ions were found to be compatible with the Langmuir and pseudo-second-order kinetic models. Additionally, based on the thermodynamic characteristics, the adsorption was endothermic and spontaneous. Furthermore, the environmental viability of PGO-Gd and its application was demonstrated by studying its reusability in treating spiked surface water. PGO-Gd shows promise as an adsorbent in effectively removing both radionuclides from aqueous solutions.

18.
J Hazard Mater ; 417: 125995, 2021 09 05.
Article in English | MEDLINE | ID: mdl-34004581

ABSTRACT

This study utilized a facile and scalable one-pot wet impregnation method for Hg(II) adsorption to prepare sulfur-anchored palm shell waste activated carbon powder (PSAC-S). The experimental results revealed that the sulfur precursors promote the surface charge on the PSAC and enhance Hg(II) removal via the Na2S > Na2S2O4 > CH3CSNH2 sequence. PSAC-S prepared using Na2S had significant Hg(II) sorption efficiencies, achieving a maximum sorption capacity of 136 mg g-1 from the Freundlich model. Compared to PSAC, PSAC-S had an enhancement in Hg(II) sorption behavior for heterogeneous interactions with sulfur. PSAC-S also demonstrated high Hg(II) sorption capacities over a wide range of solution pH, while ionic strength had an insignificant impact on Hg(II) removal efficiencies. Through various spectroscopic analyses, we identified the mechanisms of Hg(II) removal by PSAC-S as electrostatic interactions, Hg-Cl complexation, and precipitation as HgSO4. Moreover, PSAC-S unveiled high adsorption affinity and Hg(II) stability in actual groundwater (even in µg L-1 level). These overall results show the potentials of PSAC-S as an alternative, easily scalable material for in-situ Hg(II) remediation.


Subject(s)
Groundwater , Mercury , Adsorption , Charcoal , Sulfur
19.
Environ Geochem Health ; 43(9): 3343-3350, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33661450

ABSTRACT

In this study, soil washing is applied for the remediation of heavy-metal (Pb, Cu and Zn) contaminated paddy soil located near an abandoned mine area. FeCl3 washing solutions were used in bench-scale soil washing experiments at concentrations in the range of 0.1 to 1 M. The strong acid, HCl was also used in this study for comparison. The washing process was performed at room temperature, mixing at 200 RPM for 1 h and a liquid to solid ratio of 2. A sequential extraction technique was performed to evaluate the chemical fractions of Pb in the soils. The soil washing effectiveness was evaluated and compared against regulations applicable to residential districts (Korean warning standards). The soil washing results showed that the heavy metal concentrations were reduced with increasing concentrations of FeCl3. Moreover, the lowest heavy metal concentrations were obtained with a 1 M FeCl3 washing solution. In the case of Pb removal, a 0.3 M FeCl3 washing solution was required to comply with the Korean warning standard of 200 mg/kg. The lowest Pb concentration of 117 mg/kg was obtained with 1 M FeCl3. Similar washing results were also obtained with HCl. The initial total concentrations for Cu and Zn were below the Korean warning standards of 150 and 300 mg/kg, respectively. Consequently, the reduction in Cu and Zn from the contaminated paddy soil using FeCl3 washing solutions was rather limited. The sequential extraction results showed that the exchangeable and weak acid-soluble fractions of Pb were significantly reduced upon FeCl3 washing.


Subject(s)
Metals, Heavy , Soil Pollutants , Environmental Pollution , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
20.
Chemosphere ; 267: 128889, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33187656

ABSTRACT

Heavy metals contamination of water is one of the environmental issue globally. Thus prepared fly ash-based zeolite (FZA)-supported nano zerovalent iron and nickel (nZVI/Ni@FZA) bimetallic composite from low-cost fly ash waste for the potential treatment of anion (Cr(VI) and cation Cu(II)) heavy metals from industrial effluents at pH 3 and 5, respectively in this study. The systematic interaction between FZA and nZVI/Ni and the adsorptive removal mechanism was studied. The mean surface area of the nZVI/Ni@FZA (154.11 m2/g) was much greater than that of the FZA (46.6 m2/g) and nZVI (4.76 m2/g) independently, as determined by BET-N2 measurements. The effect of influence factors on the removal of Cr(VI) and Cu(II) by nZVI/Ni@FZA, such as pH effect, initial concentration effect, time effect, temperature effect, coexisting metals, and ionic strength, and cumulative loading ability, were discussed. The maximum adsorption capacity of nZVI/Ni@FZA was 48.31 mg/g and 147.06 mg/g towards Cr(VI) and Cu(II), respectively. These were higher than those of nZVI@FZA and FZA. It demonstrated that Ni could play an important role in enhancing the reduction ability of nZVI. Furthermore, isothermal and kinetic results revealed that both heavy metal adsorption processes were rate limiting monolayer Langmuir adsorption on homogeneous surfaces. Thermodynamic results suggested that the adsorptive removal of metal ions was endothermic with spontaneity. The applicability of nZVI/Ni@FZA on real industrial wastewater treatment results demonstrate that the concentration of heavy metals were removed under the acceptable standard levels. Further the adsorption capacity of nZVI/Ni@FZA was higher than the nZVI@FZA and FZA. The overall results demonstrated that nZVI/Ni@FZA was a promising, efficient, and economically feasible sorbent for potential wastewater treatment. Moreover this is first report on the preparation nZVI/Ni@FZA bimetallic composite.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Zeolites , Adsorption , Coal Ash , Iron , Kinetics , Nickel , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...