Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 7(52): 86239-86256, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-27863392

ABSTRACT

The design and synthesis of a quinazoline-based, multi-kinase inhibitor for the treatment of acute myeloid leukemia (AML) and other malignancies is reported. Based on the previously reported furanopyrimidine 3, quinazoline core containing lead 4 was synthesized and found to impart dual FLT3/AURKA inhibition (IC50 = 127/5 nM), as well as improved physicochemical properties. A detailed structure-activity relationship study of the lead 4 allowed FLT3 and AURKA inhibition to be finely tuned, resulting in AURKA selective (5 and 7; 100-fold selective over FLT3), FLT3 selective (13; 30-fold selective over AURKA) and dual FLT3/AURKA selective (BPR1K871; IC50 = 19/22 nM) agents. BPR1K871 showed potent anti-proliferative activities in MOLM-13 and MV4-11 AML cells (EC50 ~ 5 nM). Moreover, kinase profiling and cell-line profiling revealed BPR1K871 to be a potential multi-kinase inhibitor. Functional studies using western blot and DNA content analysis in MV4-11 and HCT-116 cell lines revealed FLT3 and AURKA/B target modulation inside the cells. In vivo efficacy in AML xenograft models (MOLM-13 and MV4-11), as well as in solid tumor models (COLO205 and Mia-PaCa2), led to the selection of BPR1K871 as a preclinical development candidate for anti-cancer therapy. Further detailed studies could help to investigate the full potential of BPR1K871 as a multi-kinase inhibitor.


Subject(s)
Antineoplastic Agents/chemical synthesis , Aurora Kinase A/antagonists & inhibitors , Drug Discovery , Leukemia, Myeloid, Acute/drug therapy , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Quinazolines/chemical synthesis , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Design , Humans , Male , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 22(14): 4654-9, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22726931

ABSTRACT

A new class of FLT3 inhibitors has been identified based on the 3-phenyl-1H-5-pyrazolylamine scaffold. The structure-activity relationships led to the discovery of two carbamate series, and some potent compounds within these two series exhibited better growth inhibition of FLT3-mutated MOLM-13 cells than FLT3 inhibitors sorafenib (2) and ABT-869 (3). In particular, compound 8d exhibited the ability to regress tumors in mouse xenograft model using MOLM-13 cells.


Subject(s)
Amines/chemistry , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Amines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Mice , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem ; 19(14): 4173-82, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21708468

ABSTRACT

Preclinical investigations and early clinical trial studies suggest that FLT3 inhibitors offer a viable therapy for acute myeloid leukemia. However, early clinical data for direct FLT3 inhibitors provided only modest results because of the failure to fully inhibit FLT3. We have designed and synthesized a novel class of 3-phenyl-1H-5-pyrazolylamine-derived compounds as FLT3 inhibitors which exhibit potent FLT3 inhibition and high selectivity toward different receptor tyrosine kinases. The structure-activity relationships led to the discovery of two series of FLT3 inhibitors, and some potent compounds within these two series exhibited comparable potency to FLT3 inhibitors sorafenib (3) and ABT-869 (4) in both wt-FLT3 enzyme inhibition and FLT3-ITD inhibition on cell growth (MOLM-13 and MV4;11 cells). In particular, the selected compound 12a exhibited the ability to regress tumors in mouse xenograft models using MOLM-13 and MV4;11 cells.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzenesulfonates/chemistry , Benzenesulfonates/pharmacology , Cell Proliferation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indazoles/chemistry , Indazoles/pharmacology , Mice , Molecular Structure , Niacinamide/analogs & derivatives , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Sorafenib , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , fms-Like Tyrosine Kinase 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...