Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Sci ; 16(3): 529-542, 2020.
Article in English | MEDLINE | ID: mdl-32015688

ABSTRACT

Hyperuricemia (HUA) is a metabolic disease characterized by elevated serum uric acid (SUA). Empagliflozin, a kind of sodium-glucose cotransporter 2 inhibitors, has recently emerged as a new antidiabetic agent by facilitating glucose excretion in urine. Moreover, there was evidence of SUA reduction following treatment with empagliflozin in addition to glycaemic control, while the molecular mechanisms remain unknown. To investigate the potential mechanisms, the model of type 2 diabetes (T2DM) with HUA was established by combination of peritoneal injection of potassium oxonate and intragastric administration of hypoxanthine in KK-Ay mice. A series of method such as RT-PCR, western blot, immunochemistry, immunofluorescence were conducted to explore the mechanism. Our results showed that empagliflozin significantly ameliorated the levels of SUA and blood glucose in T2DM mice with HUA. Furthermore, in both kidney and ileum, empagliflozin obviously promoted protein expression of uric acid (UA) transporter ABCG2, p-AMPK, p-AKT and p-CREB. The same trend was observed in human tubular epithelial (HK-2) cells. Additionally, through application of an AMPK inhibitor (Compound C), it was further confirmed empagliflozin exerted its anti-hyperuricemic effects in an AMPK dependent manner. Meanwhile, with the help of ChIP assay and luciferase reporter gene assay, we found that CREB further activated ABCG2 via binding to the promoter of ABCG2 to induce transcription. Taken together, our study demonstrated that empagliflozin treatment played an essential role in attenuating HUA by upregulation of ABCG2 via AMPK/AKT/CREB signaling pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Benzhydryl Compounds/therapeutic use , Cyclic AMP Response Element-Binding Protein/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucosides/therapeutic use , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Blotting, Western , Cell Line , Chromatin Immunoprecipitation , HEK293 Cells , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects
2.
Front Pharmacol ; 10: 886, 2019.
Article in English | MEDLINE | ID: mdl-31447680

ABSTRACT

Objective: Calcium dobesilate (CaD), an effective drug for the treatment of diabetic microvascular complications, especially diabetic retinopathy, is widely used in the clinic. Interestingly, several studies have indicated that CaD is therapeutic for diabetic kidney disease (DKD). Recently, evidence has indicated that altered vascular endothelial growth factor (VEGF) expression and decreased autophagy are the main pathological mechanisms of proteinuria. Thus, this study was conducted to explore the effect of CaD on restoring autophagy in DKD and the possible signaling pathway between VEGF and autophagy. Methods: Obese mice with spontaneous diabetes (KK-Ay) and high-fat diet- and streptozotocin-induced diabetic mice (HFD/STZ) were used in this study. Biochemical staining, western blotting, and immunohistochemistry were conducted to determine the angioprotective effect of CaD and the underlying mechanism between autophagy and VEGF/VEGFR. Results: Our results showed that CaD was capable of reducing albuminuria and restoring renal histological changes in KK-Ay and HFD/STZ-induced diabetic mice. CaD restored autophagy by decreasing the protein expression of LC3 II, Atg5, and beclin 1 and increasing the expression of P62. Moreover, CaD reduced the activation of the autophagy-related PI3K/AKT/mTOR pathway possibly via decreasing VEGF and downregulating VEGF receptor 2. Conclusion: Overall, CaD, as a novel potential therapeutic drug for DKD, plays a key role in protecting renal function and restoring autophagy by blocking VEGF/VEGFR2 and inhibiting the PI3K/AKT/mTOR signaling pathway.

3.
Mol Ther Nucleic Acids ; 9: 48-56, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29246323

ABSTRACT

Fibrosis is the major pathological feature of diabetic kidney disease (DKD). Autophagy, a process to maintain metabolic homeostasis, is obviously inhibited in DKD. Triptolide (TP) is a traditional Chinese medicine extract known for immune suppression and anti-inflammatory and anti-cancer activities. In this study, we investigated the effects of TP on autophagy and fibrosis in DKD. TP restored autophagy and alleviated fibrosis in DKD rats and high-glucose-incubated human mesangial cells. After we applied 3-methyladenine (an autophagy inhibitor) and autophagy-related gene 5-small interfering RNA (siRNA), we found that the improvement of fibrosis on TP was related to the restoration of autophagy. In addition, miR-141-3p levels were increased under high glucose but reduced after TP treatment. miR-141-3p overexpression aggravated the fibrosis and restrained the autophagy further, while miR-141-3p inhibition imitated the effects of TP. As an action target, phosphatase and tensin homolog (PTEN) showed corresponding opposite changes. After PTEN-siRNA transfection, the effects of TP on autophagy and fibrosis were inhibited. PTEN levels were downregulated, with downstream phosphorylated protein kinase B (Akt) and the mammalian target of rapamycin (mTOR) upregulated in high glucose, which were reversed by TP treatment. These findings indicate that TP alleviates fibrosis by restoring autophagy through the miR-141-3p/PTEN/Akt/mTOR pathway and is a novel therapeutic option for DKD.

4.
Front Pharmacol ; 8: 780, 2017.
Article in English | MEDLINE | ID: mdl-29163166

ABSTRACT

The dipeptidyl peptidase-4 (DPP-4) inhibitor saxagliptin has been found to reduce progressive albuminuria, but the exact mechanism of inhibition is unclear. Podocyte epithelial-to-mesenchymal transition (EMT) has emerged as a potential pathway leading to proteinuria in diabetic nephropathy (DN). Stromal cell-derived factor-1α (SDF-1α), one of the substrates of DPP-4, can activate the protein kinase A pathway and subsequently inhibit its downstream effector, transforming growth factor-ß1 (TGF-ß1), which induces podocyte EMT. Thus, this study was designed to test the hypothesis that saxagliptin reduces progressive albuminuria by preventing podocyte EMT through inhibition of SDF-1α cleavage in DN. The results of a series of assays, including ELISA, western blotting, and immunochemistry/immunofluorescence, showed that saxagliptin treatment obviously ameliorated urinary microalbumin excretion and renal histological changes in high-fat diet/streptozotocin-induced diabetic rats. Furthermore, saxagliptin-treated diabetic rats presented with suppression of DPP-4 activity/protein expression accompanied by restoration of SDF-1α levels, which subsequently hindered NOX2 expression and podocyte EMT. In vitro, we consistently observed that saxagliptin significantly inhibited increased DPP-4 activity/expression, oxidative stress and podocyte EMT. Application of an SDF-1α receptor inhibitor (AMD3100) to cultured podocytes further confirmed the essential role of SDF-1α in podocyte EMT inhibition. In sum, we demonstrated for the first time that saxagliptin treatment plays an essential role in ameliorating progressive DN by preventing podocyte EMT through a SDF-1α-related pathway, suggesting that saxagliptin could offer renoprotection and that SDF-1α might be a potential therapeutic target for DN.

SELECTION OF CITATIONS
SEARCH DETAIL
...