Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(43): 50265-50274, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37871267

ABSTRACT

The electrostrictive effect, which induces strain in ferroelectric ceramics, offers distinct advantages over its piezoelectric counterpart for high-precision actuator applications, including anhysteretic behavior even at high frequencies, rapid reaction times, and no requirement for poling. Historically, commercially available electrostrictive materials have been lead oxide-based. However, global restrictions on the use of lead in electronic components necessitate the exploration of lead-free electrostrictive ceramics with a high strain performance. Although various engineering strategies for producing materials with high strain have been proposed, they typically come at the expense of increased strain hysteresis. Here, we describe the extraordinary electrostrictive response of (Ba0.95Ca0.05)(Ti0.88Sn0.12)O3 (BCTS) ceramics with ultrahigh electrostrictive strain and negligible hysteresis achieved through texture engineering leveraging the anisotropic intrinsic lattice contribution. The BCTS ceramics exhibit a high unipolar strain of 0.175%, a substantial electrostrictive coefficient Q33 of 0.0715 m4 C-2, and an ultralow hysteresis of less than 0.8%. Notably, the Q33 value is three times greater than that of high-performance lead-based Pb(Mg1/3Nb2/3)O3 electrostrictive ceramics. Multiscale structural analyses demonstrate that the electrostrictive effect dominates the BCTS strain response. This research introduces a novel approach to texture engineering to enhance the electrostrictive effect, offering a promising paradigm for future advancements in this field.

2.
ACS Appl Mater Interfaces ; 15(31): 37706-37716, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523263

ABSTRACT

Lead-free ceramics with superior piezoelectric performance are highly desirable in various electromechanical applications. Unfortunately, it is still challenging to achieve significantly enhanced piezoelectricity without sacrificing the Curie temperature (Tc) in current BaTiO3-based ceramics. To address this issue, a synergistic design strategy of integrating crystallographic texture, multiphase coexistence, and doping engineering is proposed here. Highly [001]c-textured (Ba0.95Ca0.05)(Ti0.92Zr0.06Sn0.02)O3 ceramics are synthesized through Li-related liquid-phase-assisted templated grain growth, with improved grain orientation quality (f of ∼96% and r of ∼0.16) achieved at substantially reduced texture temperatures. Encouragingly, ultrahigh comprehensive piezoelectric properties, i.e., piezoelectric coefficient d33 of ∼820 pC N-1, electrostrain Smax/Emax of ∼2040 pm V-1, and figure of merit d33 × g33 of ∼23.5 × 10-12 m2 N-1, are simultaneously obtained without sacrificing Tc, which are also about 2.3, 2.4, and 4.3 times as high as those of non-textured counterpart, respectively. On the basis of the experiments and theoretical modeling, the outstanding piezoelectric performance is attributed to more effective exploration of property anisotropy and easier polarization rotation/extension, owing to improved grain orientation quality, dissolution of templates into oriented grains, coexisting R + O + T phases, and domain miniaturization. This work provides important guidelines for developing novel ceramics with outstanding piezoelectric properties and can largely expand application fields of textured BaTiO3-based ceramics into high-performance and multilayer electronic devices.

3.
Science ; 380(6640): 87-93, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37023196

ABSTRACT

The piezoelectric properties of lead zirconate titanate [Pb(Zr,Ti)O3 or PZT] ceramics could be enhanced by fabricating textured ceramics that would align the crystal grains along specific orientations. We present a seed-passivated texturing process to fabricate textured PZT ceramics by using newly developed Ba(Zr,Ti)O3 microplatelet templates. This process not only ensures the template-induced grain growth in titanium-rich PZT layers but also facilitates desired composition through interlayer diffusion of zirconium and titanium. We successfully prepared textured PZT ceramics with outstanding properties, including Curie temperatures of 360°C, piezoelectric coefficients d33 of 760 picocoulombs per newton and g33 of 100 millivolt meters per newton, and electromechanical couplings k33 of 0.85. This study addresses the challenge of fabricating textured rhombohedral PZT ceramics by suppressing the otherwise severe chemical reaction between PZT powder and titanate templates.

4.
Article in English | MEDLINE | ID: mdl-34662277

ABSTRACT

Substantial advancement has been made in recent years on lead-free piezoelectric materials, but up to date, it is still a challenge to make a true medical imaging ultrasonic array transducer with center frequency <3 MHz. There are two major obstacles: the difficulty of fabricating large enough uniform lead-free piezoelectric materials with high piezoelectric coefficient, and the severe electrical impedance mismatch of an array element to the imaging system due to the relatively low dielectric constant of lead-free materials compared to lead-based piezoelectric materials. We resolved these two issues by employing texture engineering and stacking piezoelectric-layer design, which allowed us to fabricate an 80 element phased array transducer with the center frequency of 2.9 MHz and a bandwidth >80% for human heart imaging. The high-quality lead-free (Ba0.95Ca0.05)(Ti0.94Zr0.06)O3 textured ceramic plate has the size of 23×22×0.8 mm3 with the piezoelectric constant d33 = 570 pC/N. Phantom imaging and internal clinical human heart imaging demonstrated that this lead-free phased array can produce comparable imaging quality to that of a commercial PZT-5H ceramic-based phased array transducer, which demonstrated the practicality of using lead-free materials to replace PZT ceramics in phased array transducers for medical imaging applications.


Subject(s)
Transducers , Ultrasonics , Diagnostic Imaging , Equipment Design , Humans , Ultrasonography/methods
5.
Nat Commun ; 12(1): 1414, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33658525

ABSTRACT

The figure-of-merits of ferroelectrics for transducer applications are their electromechanical coupling factor and the operable temperature range. Relaxor-PbTiO3 ferroelectric crystals show a much improved electromechanical coupling factor k33 (88~93%) compared to their ceramic counterparts (65~78%) by taking advantage of the strong anisotropy of crystals. However, only a few relaxor-PbTiO3 systems, for example Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3, can be grown into single crystals, whose operable temperature range is limited by their rhombohedral-tetragonal phase transition temperatures (Trt: 60~120 °C). Here, we develop a templated grain-growth approach to fabricate <001>-textured Pb(In1/2Nb1/2)O3-Pb(Sc1/2Nb1/2)O3-PbTiO3 (PIN-PSN-PT) ceramics that contain a large amount of the refractory component Sc2O3, which has the ability to increase the Trt of the system. The high k33 of 85~89% and the greatly increased Trt of 160~200 °C are simultaneously achieved in the textured PIN-PSN-PT ceramics. The above merits will make textured PIN-PSN-PT ceramics an alternative to single crystals, benefiting the development of numerous advanced piezoelectric devices.

6.
ACS Appl Mater Interfaces ; 12(34): 38415-38424, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32846483

ABSTRACT

High-performance piezoelectrics are pivotal to various electronic applications including multilayer actuators, sensors, and energy harvesters. Despite the presence of high Lotgering factor F001, two key limitations to today's relaxor-PbTiO3 textured ceramics are low piezoelectric properties relative to single crystals and high texture temperature. In this work, Pb(Yb1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PYN-PMN-PT) textured ceramics with F001 ∼ 99% were synthesized at only 975 °C through liquid-phase-assisted templated grain growth, where of particular significance is that single-crystal properties, i.e., very large electrostrain Smax/Emax ∼ 1830 pm V-1, giant piezoelectric figure of merit d33 × g33 ∼ 61.3 × 10-12 m2 N-1, high electromechanical coupling k33 ∼ 0.90, and Curie temperature Tc ∼ 205 °C, were simultaneously achieved. Especially, the Smax/Emax and d33 × g33 values correspond to ∼180% enhancement as compared to the regularly 1200 °C-textured ceramics with F001 ∼ 96%, representing the highest values ever reported on piezoceramics. Phase-field simulation revealed that grain misorientation has a stronger influence on piezoelectricity than texture fraction. The ultrahigh piezoelectric response achieved here is mainly attributed to effective control of grain orientation features and domain miniaturization. This work provides important guidelines for developing novel ceramics with significantly enhanced functional properties and low synthesis temperature in the future and can also greatly expand application fields of piezoceramics to high-performance, miniaturized electronic devices with multilayer structures.

7.
Nat Mater ; 19(9): 999-1005, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32541934

ABSTRACT

Dielectric ceramics are highly desired for electronic systems owing to their fast discharge speed and excellent fatigue resistance. However, the low energy density resulting from the low breakdown electric field leads to inferior volumetric efficiency, which is the main challenge for practical applications of dielectric ceramics. Here, we propose a strategy to increase the breakdown electric field and thus enhance the energy storage density of polycrystalline ceramics by controlling grain orientation. We fabricated high-quality <111>-textured Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 (NBT-SBT) ceramics, in which the strain induced by the electric field is substantially lowered, leading to a reduced failure probability and improved Weibull breakdown strength, on the order of 103 MV m-1, an ~65% enhancement compared to their randomly oriented counterparts. The recoverable energy density of <111>-textured NBT-SBT multilayer ceramics is up to 21.5 J cm-3, outperforming state-of-the-art dielectric ceramics. The present research offers a route for designing dielectric ceramics with enhanced breakdown strength, which is expected to benefit a wide range of applications of dielectric ceramics for which high breakdown strength is required, such as high-voltage capacitors and electrocaloric solid-state cooling devices.

8.
RSC Adv ; 10(18): 10932-10938, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-35492900

ABSTRACT

Using a simple one-pot method, the reduction of liquid terminated-carboxyl fluoroelastomers (LTCFs) by sodium borohydride and samarium chloride (NaBH4/SmCl3) was successfully realized and liquid terminated-hydroxyl fluoroelastomers (LTHFs) were obtained. The structure and functional group content of LTCFs and LTHFs were analyzed by FTIR, 1H-NMR, 19F-NMR and chemical titration. The results showed that -C[double bond, length as m-dash]C- and carboxyl groups of LTCFs were reduced efficiently, the reduction rate reached 92% under optimum reaction conditions. Compared with other frequently-used metal chlorides, SmCl3 with a high coordination number could increase the reduction activity of NaBH4 more effectively and the reduction mechanism was explored.

9.
Langmuir ; 35(45): 14517-14521, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31630514

ABSTRACT

We developed a facile one-pot method to synthesize multishelled hollow mesoporous SiO2 microspheres (HMSs) with controllable interior structures including one-shell, double-shell, and yolk-shell. Single reagent formaldehyde could fully control the morphology of HMSs, in that formaldehyde was crucial to the SiO2 precursor's hydrolysis rate and the template pore size.

10.
ACS Appl Mater Interfaces ; 11(26): 23346-23352, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31185165

ABSTRACT

Electrocaloric refrigeration utilizing ferroelectrics has recently gained tremendous attention because of the urgent demand for solid-state cooling devices. However, the low room-temperature electrocaloric effect and narrow operation temperature window hinder the implementation of lead-free ferroelectrics in high-efficiency cooling applications. In this work, chemical engineering and thick-film architecture design strategies were integrated into a BaTiO3-based system to resolve this challenge. Novel environmental-friendly Ba(Zr0.20Ti0.80)O3-Ba(Sn0.11Ti0.89)O3 (BZT-BST) bilayer films of ∼13 µm in single-layer thickness were prepared by the tape casting process. A giant adiabatic temperature change, Δ T ∼ 5.2 K, and a large isothermal entropy change, Δ S ∼ 6.9 J kg-1 K-1, were simultaneously achieved at room temperature based on the direct measurements, which are much higher than those reported previously in many lead-free ferroelectrics. Moreover, the BZT-BST thick films exhibited a remarkably widened operation temperature range from about 10 to 60 °C. These outstanding properties were mainly attributed to the multiphase coexistence near room temperature, relaxor ferroelectric characteristics, and improved electric-field endurance of the bilayer thick films. This work provides a guideline for the development of environment-friendly electronic materials with both ultrahigh and stable electrocaloric performance and will broaden the application areas of lead-free ferroelectrics.

11.
ACS Appl Mater Interfaces ; 10(37): 31488-31497, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30136566

ABSTRACT

Energy-harvesting utilizing piezoelectric materials has recently attracted extensive attention due to the strong demand of self-powered electronics. Unfortunately, low power density and poor long-term stability seriously hinder the implementation of lead-free piezoelectrics as high-efficiency energy harvesters. For the first time, we demonstrate that tailoring grain orientations of lead-free ceramics via templated grain growth can effectively produce ultrahigh power generation performance and excellent endurance against electrical/mechanical fatigues. Significantly improved fatigue resistance was observed in (Ba0.94Ca0.06)(Ti0.95Zr0.05)O3 grain-oriented piezoceramics (with ∼99% [001]c texture) up to 106 bipolar cycles, attributed to the enhanced domain mobility, less defect accumulation, and thus suppressed crack generation/propagation. Interestingly, the novel energy harvesters, which were developed based on the textured ceramics with high electromechanical properties, possessed ∼9.8 times enhancement in output power density compared to the nontextured counterpart while maintaining stable output features up to 106 vibration cycles. The power densities, which increased from 6.4 to 93.6 µW/mm3 with increasing acceleration excitation from 10 to 50 m/s2, are much higher than those reported previously on lead-free energy harvesters. This work represents a significant advancement in piezoelectric energy-harvesting field and can provide guidelines for future efforts in this direction.

12.
Langmuir ; 34(28): 8223-8229, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29940734

ABSTRACT

A concise and facile sol-gel method to prepare multiple magnetic SiO2/Fe xO y hollow porous spheres was developed. A series of SiO2/Fe xO y hollow porous spheres consisting of single shell, yolk-shell, double shells, and triple shells could be obtained by simply adjusting the formaldehyde amount, as Fe(acac)3 was used as the shell-forming promoter. As the formaldehyde amount increases, the morphology of the as-prepared hollow spheres changed from single-shelled, yolk-shelled, double-shelled, to triple-shelled and then turned back. The spheres possess a large specific surface area (∼966 m2/g), uniform mesopores (∼4.5 nm), and large pore volume (1.37 cm3/g). Moreover, the yolk-shelled spheres have been successfully used in in situ adsorbing and reducing heavy metal ions in aqueous solution; the results suggested that it was an efficient adsorbent and convenient to concentrate from water.

13.
ACS Appl Mater Interfaces ; 9(35): 29863-29871, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28799748

ABSTRACT

Both low strain hysteresis and high piezoelectric performance are required for practical applications in precisely controlled piezoelectric devices and systems. Unfortunately, enhanced piezoelectric properties were usually obtained with the presence of a large strain hysteresis in BaTiO3 (BT)-based piezoceramics. In this work, we propose to integrate crystallographic texturing and domain engineering strategies into BT-based ceramics to resolve this challenge. [001]c grain-oriented (Ba0.94Ca0.06)(Ti0.95Zr0.05)O3 (BCTZ) ceramics with a texture degree as high as 98.6% were synthesized by templated grain growth. A very high piezoelectric coefficient (d33) of 755 pC/N, and an extremely large piezoelectric strain coefficient (d33* = 2027 pm/V) along with an ultralow strain hysteresis (Hs) of 4.1% were simultaneously achieved in BT-based systems for the first time, which are among the best values ever reported on both lead-free and lead-based piezoceramics. The exceptionally high piezoelectric response is mainly from the reversible contribution, and can be ascribed to the piezoelectric anisotropy, the favorable domain configuration, and the formation of smaller sized domains in the BCTZ textured ceramics. This study paves a new pathway to develop lead-free piezoelectrics with both low strain hysteresis and high piezoelectric coefficient. More importantly, it represents a very exciting discovery with potential application of BT-based ceramics in high-precision piezoelectric actuators.

14.
Inorg Chem ; 53(20): 11060-7, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25286133

ABSTRACT

To develop a better understanding of the mechanism responsible for topochemical microcrystal conversion (TMC) from Aurivillius SrBi4Ti4O15 precursors to perovskite SrTiO3 microplatelets, compositional/structural evolutions, morphological development, and reaction interface evolution of the (001) oriented SrBi4Ti4O15 microplatelets were investigated during the conversion process. The results show that multiple topotactic nucleation events of SrTiO3 occurred directly on the surfaces of SrBi4Ti4O15 above 700 °C, while reacting zones of intermediate phase(s) with less Bi(3+) contents were observed to form in the interior of SrBi4Ti4O15. Extensive exfoliation of the precursors occurred generally parallel to the (001) surfaces above 775 °C. At 950 °C, the original single-crystal SrBi4Ti4O15 platelet was replaced by a polycrystalline aggregate consisting of (001) aligned SrTiO3 crystallites and poorly crystallized intermediate phase(s). With further increasing the temperature or holding time, the SrTiO3 phase formed from related intermediate phase(s), and the aligned crystallites were sintered to form dense SrTiO3 with strong (001) orientation. The obtained SrTiO3 microplatelets preserved the shape of SrBi4Ti4O15 and show high chemical and phase purity. This TMC mechanism has general applicability to a variety of compounds and will be very useful for the design and synthesis of novel anisotropic perovskite crystals with high quality in the future.

15.
Zhonghua Fu Chan Ke Za Zhi ; 42(3): 180-3, 2007 Mar.
Article in Chinese | MEDLINE | ID: mdl-17537304

ABSTRACT

OBJECTIVE: To explore the relationship of methylenetetrahydrofolate reductase (MTHFR) gene C677T, factor V (FV) gene G1691A and prothrombin (PT) gene G20210A polymorphisms to unexplained recurrent early spontaneous abortion (URESA). METHODS: One hundred and twelve patients with URESA and 100 women with at least 1 normal pregnancy and without any miscarriage were analyzed for MTHFR, FV and PT gene polymorphisms by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS: MTHFR gene T/T genotype and T allele frequencies were increased in URESA patients [38.4% (43/112) and 59.8% (134/224)] versus controls [18.0% (18/100) and 43% (43/100), P<0.01]. The patients carrying T/T genotype had a high risk of URESA (OR=2.8390, 95% CI: 1.5022 - 5.3661). However, FV and PT G20210A mutations were not found either in patients or in controls. CONCLUSIONS: The genetic polymorphisms of MTHFR C677T are associated with URESA. It might indicate a genetic influence on pathogenesis of URESA. FV and PT gene mutations may be rare in Chinese women, and have no significance in URESA.


Subject(s)
Abortion, Habitual/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Mutation , Polymorphism, Genetic , Adult , Factor V/genetics , Female , Genetic Predisposition to Disease , Genotype , Humans , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Pregnancy , Prothrombin/genetics , Risk Factors , Thrombophilia/genetics
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 22(4): 473-5, 2005 Aug.
Article in Chinese | MEDLINE | ID: mdl-16086297

ABSTRACT

OBJECTIVE: To illuminate the preliminary genotype and allele frequency distribution of D6S477 and the other four short tandem repeat(STR) loci in Chinese Han population in Qingdao area and to probe the possibility of their genetic application. METHODS: Two hundred ACD-blood specimens were collected from the unrelated individuals in Qingdao. The DNA samples were extracted with Chelex method and were amplified by polymerase chain reaction technique. The PCR products were analyzed by polyacrylamide gel electrophoresis and displayed using silver staining. RESULTS: The authors obtained the allele frequency distribution and preliminary genotype of D6S477, D9S1118, D18S865, D19S400 and D20S161 STR loci. No deviation from Hardy-Weinberg equilibrium was observed in the five loci. CONCLUSION: All the five loci have higher chance of exclusion and discriminating power, and they will be useful markers for researches in genetics.


Subject(s)
Microsatellite Repeats/genetics , Polymorphism, Genetic , Asian People/genetics , China , Gene Frequency , Genotype , Humans , Linkage Disequilibrium , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...